• 제목/요약/키워드: railroad power lines

검색결과 41건 처리시간 0.034초

LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구 (A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm)

  • 전왕규;최병길
    • 한국측량학회지
    • /
    • 제31권4호
    • /
    • pp.331-339
    • /
    • 2013
  • LiDAR 측량은 고밀도로 정확하게 거리를 측정하는 장점 때문에 지표면과 지표면 위의 객체를 3D 모델링하는데 사용되는 주요기술 중의 하나이다. 본 연구의 목적은 고밀도 LiDAR 데이터와 RANSAC 알고리즘을 이용하여 자동으로 철도전력선을 탐지하고 모델링하는 방법을 개발하는데 있다. 철도전력선을 탐지하기 위하여 레이저 데이터의 다중반사 특성과 철도전력선에 대한 형상정보를 이용한다. 이를 위한 프로세스는 최초 단위라인을 찾기 위한 직육면체 분석과 라인 추적, 연결 그리고 색인 작업으로 구성되며, 반복 RANSAC과 라인 파라미터를 구하기 위한 최소제곱법이 모델링을 위하여 사용된다. 철도전력선의 경우에는 정확도 확인을 위한 실측자료를 구하는 것이 매우 힘들어서 정량적인 정확도 평가가 어려우나 모델에 대한 레이저점군의 표준편차는 x-y 및 z 좌표 각각 8cm와 5cm로 양호하였고, 육안 검사에 의한 완성도면에서도 원 데이터와 비교할 때 모든 철도전력선 라인이 탐지 및 모델링된 것을 알 수 있었다. 본 연구에서 제시하는 방법의 모든 과정은 완전히 자동화하였으며, 특히 다수의 전력선이 복잡하게 설치된 지역에서도 적용될 수 있도록 개발하였다.

철도용 무선전력전송시스템의 급전선로와 레일유기전압의 관계 (Relation between Induced Voltage of Rail and Feeding Line of Wireless Power Transfer System for Railway Application)

  • 김재희;박찬배;정신명;이승환;이병송;이준호;이수길
    • 한국철도학회논문집
    • /
    • 제17권4호
    • /
    • pp.228-232
    • /
    • 2014
  • 철도의 무선전력전송 시스템을 구현하는데 있어 급전선로에서 생성된 자기장은 레일에 유기전압을 형성한다. 레일의 유기전압은 궤도회로의 동작 및 안전사고에 영향을 줄 수 있기 때문에 최소화하는 것이 필요하다. 본 논문에서는 3가지 무선전력전송 선로에 대해서 레일에 형성되는 유기전압의 관계를 시뮬레이션을 통하여 살펴보고 레일 유기전압을 줄이기 위한 급전선로의 자기장 분포를 제시한다.

전차선로 전기적 특성 평가 시스템 구현 (Implementation of Electrical Property Assessment System for Overhead Contact Lines)

  • 오석용;박영;조용현;이기원;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.497-503
    • /
    • 2011
  • Currently in Korea, the simple catenary type overhead contact line system is being applied to both conventional lines and high speed lines of electric railway, and circulation current flowing into the catenary system frequently bring undesirable consequences. Namely, the connector wire has many problems according to a flow of excessive circulation current and arc current on catenary when an electric train runs at high speed. This paper presents the development and application of a real-time data acquisition system designed to measure the electrical characteristics of an overhead catenary system in electric railways. The developed system is capable of storing data of a 25 kV power source in a live wire state through a telemetry environment. The field test results show that the proposed technique and the developed system can be practically applied to measure characteristics of current of an overhead catenary system.

EMTDC를 이용한 전기철도 급전계통의 고조파 해석에 관한 연구 (A study on Harmonic Analysis of Electric Railway System Using EMTOG)

  • 이한민;한문섭;오광해;이장무;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1276-1278
    • /
    • 2003
  • The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents the harmonic analysis and the modelling of traction power feeding system focused on the amplification of harmonic current.

  • PDF

철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구 (A Study on the Propagation of Harmonic Current in the Traction Power Supply System)

  • 오광해;창상훈;한문섭;이장무;신한순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Energy Storage Application Strategy on DC Electric Railroad System using a Novel Railroad Analysis Algorithm

  • Lee, Han-Sang;Lee, Han-Min;Lee, Chang-Mu;Jang, Gil-Soo;Kim, Gil-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.228-238
    • /
    • 2010
  • There is an increasing interest in research to help overcome the energy crisis that has been focused on energy storage applications in various parts of power systems. Energy storage systems are good at enhancing the reliability or improving the efficiency of a power system by creating a time gap between the generation and the consumption of power. As a contribution to the various applications of storage devices, this paper describes a novel algorithm that determines the power and storage capacity of selected energy storage devices in order to improve upon railroad system efficiency. The algorithm is also demonstrated by means of simulation studies for the Korean railroad lines now in service. A part of this novel algorithm includes the DC railroad powerflow algorithm that considers the mobility of railroad vehicles, which is necessary because the electric railroad system has a distinct distribution system where the location and power of vehicles are not fixed values. In order to derive a more accurate powerflow result, this algorithm has been designed to consider the rail voltage as well as the feeder voltage for calculating the vehicle voltage. By applying the resultant control scheme, the charging or discharging within a specific voltage boundary, energy savings and a substation voltage stabilization using storage devices are achieved at the same time.

곡선선로 속도향상을 위한 열차틸팅제어장치에 관한 연구 (The Study of Tilting Control System for Curve Line Speed-Up)

  • 이수길;한성호;송용수;한영재;이우동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.248-250
    • /
    • 2004
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

틸팅차량용 틸팅제어시스템 기술개발에 관한연구 (The Study of Tilting Control System for Tilting Vehicle)

  • 이수길;한성호;한영재;이우동;송용수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.229-231
    • /
    • 2004
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

전기식 틸팅차량의 틸팅제어장치 구성방안 연구 (The Study of Tilting Control System for EMU Tilting Vehicle)

  • 이수길;한성호;송용수;이우동;한영재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1457-1459
    • /
    • 2004
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect $30\%$ of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

기존선 속도향상을 위한 틸팅제어장치 개발에 관한 연구 (The Study of Tilting Control System for Conventional Rail Speed-Up)

  • 이수길;한성호;송용수;한영재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.991-993
    • /
    • 2003
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF