• 제목/요약/키워드: rail head

검색결과 62건 처리시간 0.025초

철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구 (Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads)

  • 김정성;김대상;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가 (Defect evaluations of weld zone in rails considering phase space-frequency demain)

  • 윤인식;권성태;장영권;정우현;이찬석
    • 한국철도학회논문집
    • /
    • 제2권2호
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

승용차량에 대한 경트럭 및 SUV의 공격성 연구 (Research on Aggressivity of Light Truck Vehicle and SUV to Passenger Vehicle)

  • 김관희;박인송
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.133-139
    • /
    • 2009
  • When two cars impact each other, it is usually known smaller vehicle's passenger likely to be more seriously injured than bigger one's. Generally it is known that SUVs and Light Truck Vehicles (LTVs) are bigger and heavier than passenger vehicles and their drive height such as bumper rail and side member, and front end stiffness are higher than those of passenger vehicles. Because of these characteristics the occupants of passenger vehicle struck by SUVs or LTVs are more likely to experience severe injury or fatal injury. To evaluate SUV and LTV's aggressivity to passenger vehicle, SUV to passenger vehicle and LTV to passenger vehicle head-on crash test have been carried out. And finally the way how to reduce incompatibility between SUV and LTV and passenger vehicles is suggested.

Interior Noise Characteristics in Japanese, Korean and Chinese Subways

  • Soeta, Yoshiharu;Shimokura, Ryota;Jeon, Jin Yong;Lee, Pyoung Jik
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.120-124
    • /
    • 2013
  • The aim of this study was to clarify the characteristics of interior noise in Japanese, Korean, and Chinese subways. The octave-band noise levels, A-weighted equivalent continuous sound pressure level ($L_{Aeq}$) and parameters extracted from interaural cross-correlation/autocorrelation functions (ACF/IACFs) were analyzed to evaluate the noise inside running train cars quantitatively and qualitatively. The average $L_{Aeq}$ was 72-83 dBA. The IACF/ACF parameters of the noise showed variations in their values, suggesting they are affected by the characteristics of the trains running, wheel-rail interaction, and cross-section of the tunnels.

충돌동역학 모델링 기법에 따른 충돌가속도 응답특성 분석 (A Response Characteristic Analysis of Impact Acceleration Using Crash Dynamics Models)

  • 조현직;김운곤;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1602-1606
    • /
    • 2008
  • In the Rail Safety Regulations article 16, deceleration rate in the survival spaces should be limited as far as is practicable to 5g, and shall not be more than 7.5g. As it is impractical to evaluate complete train behaviour by testing, the achievement of the objectives shall be validated by dynamic simulations corresponding to the reference collisions scenarios. But initial design and evaluation procedure, impact dynamics model which classified 1D and 2D is more useful than full scale model. This paper presents acceleration response characteristics between 1D and 2D dynamics model under head-on collision in standard collision scenarios.

  • PDF

각국의 레일결함 관리 기준 비교 (Comparative Study of Foreign Countries on Management Rules on Rail Defects)

  • 윤경민;송명규;이진옥;임남형
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.184-184
    • /
    • 2011
  • 선로의 레일은 재료적인 특성과 현장의 많은 주변 요소에 의한 불확실성이 매우 높은 시스템으로 결함의 위험이 상존한다. 결함 발생과 조치에 따라 영업손실로 이어지므로 레일 결함 발생과 동시에 적절한 조치가 요구된다. 따라서 레일결함 발생 시 레일교환시기를 파악하는 것이 선로관리비용을 줄일 수 있으며 레일교환에 대한 신속한 판단을 위함 관리기준을 정립하는 것이 요구된다. 현재 국내에서 고속선의 경우 관리 기준이 있으나, 일반철도는 없는 실정이다. 본 연구는 차후 일반철도 180km/h 속도상승을 계획하고 있는 현 시점에 국외 관리기준을 분석하여 결함관리기준을 정립에 기여하고자 한다. 국내의 경우, 2004. 4. 1 프랑스 기술을 전수받아 개통한 고속선은 프랑스 레일관리기준을 적용한 "레일손상 등급별 관리기준"을 제정하여 레일관리를 시행하고 있다. 국외의 경우, INNOTRACK프로젝트 안에서 관련된 다른 IM(Infrastructure Managers, 사회기반시설 관리자들)에게 최근의 활동과 변화의 이해를 제공하기 위해서, 선택된 결함들의 최소조치들의 조사가 Network Rail, OBB, Prorail, Banverket 그리고 DB에서 수행되고 있으며 UIC 지침에도 포함되고 있다. 모든 최소조치 원칙은 초음파나 육안에 의해 발견된 길이나 초음파 또는 와류탐상기(eddy current system)를 이용한 깊이에 대한 제한(limits)을 준다. 또한 침목과 이음매 또는 용접부에 관한 위치에 관한 결함의 제한이 있다. 명시된 기간은 즉각적일 수도 있으며, 보통 속도 제한이나 비상 죔쇠(Clamps)같은 경감시키는 수단에 적용될 수 있으며, 또는 더 긴 기간이 될 수도 있다. 더 긴 기간들은 수리나 레일 교체를 통하여 선로로부터 결함이 제거되어야 하는 최대의 시간이다. 본 연구에서는 Transverse Breaks, Squats, Head Checks 3가지 결함 유형에 대해 각 국에서 사용하는 최소 조치를 비교하여 분석하였다. 분석결과, 유럽에서는 레일결함에 대하여 깊이 있는 연구를 통하여 관리기준을 정하여 관리하고 있으며 이에 따라 상세하고 구체적인 레일 관리가 가능하므로 효율적이며 안전성이 제고되는 것으로 판단된다. 차후 일반철도의 180km/h 속도상승을 계획하고 있는 현 시점에서 국내철도 일반선 여건에 적합한 레일결함관리기준을 정립하기 위한 추가적인 연구가 필요할 것으로 판단된다.

  • PDF

경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가 (Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit)

  • 최정열;김준형;정지승;이선길
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

식물공장 자동화를 위한 공압 실린더를 이용한 육묘베드 이송장치의 이송력 특성 (Transfer Force Characteristics of Seedling Bed Transfer Equipment Using Pneumatic Cylinder for Automation of Plant Factory)

  • 민영봉;박상민;이공인;김동억;강동현;문성동
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.155-165
    • /
    • 2012
  • This study was performed to offer the data for design of the seedling bed transfer equipment to make the automation of working process in a plant factory. The seedling bed transfer equipment pushing the seedling bed with bearing wheels on the rail for interconnecting each working process by a pneumatic cylinder was made and examined. The examined transfer force to push the seedling bed with a weight of 178.9 N by the pneumatic cylinder with length of 60 cm and section area of 5 $cm^2$ was measured by experiments. The examined transfer forces was compared with theoretical ones calculated by the theoretical formula derived from dynamic system analysis according to the number of the seedling bed and pushing speed of the pneumatic cylinder head at no load. The transfer function of the equipment with the input variable as the pushing speed $V_{h0}$(m/s) and the output variable as the transfer force f(t)(N) was represented as $F(s)=(V_{h0}/k)(s+B/M)/(s(s^2+Bs/M+1/(kM))$ where M(kg), k(m/N) and B(Ns/m) are the mass of the bed, the compression coefficient of the pneumatic cylinder and the dynamic friction coefficient between the seedling bed and the rail, respectively. The examined transfer force curves and the theoretical ones were represented similar wave forms as to use the theoretical formular to design the device for the seedling bed transfer. The condition of no vibration of the transfer force curve was $kB^2>4M$. The condition of transferring the bed by the repeatable impact and vibration force according to difference of transfer distance of the pneumatic cylinder head from that of the bed was as $Ce^{-\frac{3{\pi}D}{2\omega}}<-1$, where ${\omega}=\sqrt{\frac{1}{kM}-\frac{B^2}{4M^2}}$, $C=\{\frac{\frac{B}{2M}-\frac{1}{kB}}{\omega}\}$, $D=\frac{B}{2M}$. The examined mean peak transfer force represented 4 times of the stead state transfer force. Therefore it seemed that the transfer force of the pneumatic cylinder required for design of the push device was 4Bv where v is the pushing speed.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.