• Title/Summary/Keyword: raffinose family oligosaccharides

Search Result 7, Processing Time 0.022 seconds

Degradation of Raffinose Oligosaccharides in Soymilk by Immobilized ${\alpha}$-Galactosidase of Aspergillus oryzae

  • Kotiguda, Girigowda;Kapnoor, Shankar S.;Kulkarni, Dhananjay;Mulimani, Veerappa H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1430-1436
    • /
    • 2007
  • [ ${\alpha}$ ]-Galactosidase was immobilized in a mixture of k-carrageenan and locust bean gum. The properties of the free and immobilized enzyme were then determined. The optimum pH for both the soluble and immobilized enzyme was 4.8. The optimum temperature for the soluble enzymes was $50^{\circ}C$, whereas that for the immobilized enzyme was $55^{\circ}C$. The immobilized enzyme was used in batch, repeated batch, and continuous modes to degrade the raffinose-family sugars present in soymilk. Two hours of incubation with the free and immobilized ${\alpha}$-galactosidases resulted in an 80% and 68% reduction in the raffinose oligo saccharides in the soymilk, respectively. In the repeated batch, a 73% reduction was obtained in the fourth cycle. A fluidized bed reactor was also designed to treat soymilk continuously and the performance of the immobilized ${\alpha}$-galactosidase tested at different flow rates, resulting in a 90% reduction of raffinose-family oligosaccharides in the soymilk at a flow rate 40 ml/h. Therefore, the present study demonstrated that immobilized ${\alpha}$-galactosidase in a continuous mode is efficient for reducing the oligosaccharides present in soymilk, which may be of considerable interest for industrial application.

A Co-expression Network of Drought Stress-related Genes in Chinese Cabbage

  • Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.243-251
    • /
    • 2017
  • Plants have evolved to adapt to abiotic stresses, such as salt, cold, and drought stress. In this study, we conducted an in-depth analysis of drought resistance mechanisms by constructing a gene co-expression network in Chinese cabbage (Brassica rapa ssp. pekinensis L.). This drought stress co-expression network has 1,560 nodes, 4,731 edges, and 79 connected components. Based on genes that showed significant co-expression in the network, drought tolerance was associated with the induction of reactive oxygen species removal by raffinose family oligosaccharides and inositol metabolism. This network could be a useful tool for predicting the functions of genes involved in drought stress resistance in Chinese cabbage.

Genotype and Environment Influence on Raffinose and Stachyose Content of Soybean Seed (콩 종자의 Raffinose 및 Stachyose 함량에 대한 유전자형과 환경의 영향)

  • Sung, Mi Kyung;Han, Sung Jin;Seo, Hyung Jin;Choi, Sang Woo;Nam, Sang Hae;Chung, Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.319-324
    • /
    • 2014
  • Soybean (Glycine max (L.) Merr.) is an important crop for protein, oil, carbohydrates, isoflavones, and many other nutrients to humans and animals. But, antinutritional factors in the raw mature soybean are exist. Raffinose and stachyose are main antinutritional factors in soybean seed. Both raffinose and stachyose are carbohydrates, belonging to the raffinose family of oligosaccharides (RFOs). RFOs are not readily digested in humans and cause flatulence or diarrhea. The objective of this research is to obtain the information on raffinose and stachyose content according to genotype and environment. A total of twenty two soybean genotypes (11 cultivars, 3 germplasms and 8 breeding lines) were selected. Each genotype was grown in the field for two years with two replications and harvested in bulk at natural maturity for two years. Content of raffinose and stachyose was detected by HPLC. The raffinose content (g/kg) of 22 genotypes was $2.68{\pm}0.21-5.87{\pm}2.43$ in year 1 and was $3.24{\pm}0.37-9.05{\pm}0.16$ in year 2. The stachyose content (g/kg) was $4.23{\pm}0.98-27.68{\pm}9.90$ at year 1 and was $5.11{\pm}1.09-25.32{\pm}0.35$ in year 2. Genotype and environment have highly significant effects on raffinose and stachyose content. Three genotypes (Da-7, 116-13, and RS-78) have low stachyose content at 5% significant level in two years. A positive correlation ($R^2=0.1985^*$) between raffinose and stachyose was observed in year 2. These informations are valuable in soybean genetics and breeding program related with raffinose and stachyose content.

Agronomic Traits of Soybean Breeding Lines with Low Stachyose and Raffinose Contents (Stachyose 및 Raffinose 저함량 콩 선발계통의 농업적 형질)

  • Ha, Do Su;Moon, Jin Young;Choi, Sang Woo;Shim, Sang In;Kim, Min Chul;Chung, Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.143-148
    • /
    • 2017
  • Soybean [Glycine max (L.) Merr.] seed is an important dietary source of protein, oil, carbohydrates, isoflavones, and other nutrients for humans and animals. Raffinose and stachyose are the main antinutritional factors in soybean seed. They are carbohydrates belonging to the raffinose family of oligosaccharides, which are not readily digested in humans and cause flatulence or diarrhea. The genetic reduction of the raffinose and stachyose contents in mature soybean seeds will improve the nutritional value of soybean. The objective of this research was to evaluate agronomic traits with 10 $F_6$ strains selected from breeding populations derived from a cross among seven parents. The contents of raffinose and stachyose in mature seeds were detected by high-performance liquid chromatography. Agronomic traits such as flower color, flowering date, harvesting date, lodging, plant height, seed coat color, hilum color, 100 seed weight, and yield were evaluated. Ten intermediate parents showed low raffinose and stachyose contents. The intermediate parent 883-1 had a small seed size, six intermediate parents (15A1, 15D1, RS-5, RS-33, RS-64, and RS-70) had a medium seed size, and two intermediate parents (14G20 and RS-21) had a large seed size. The intermediate parent RS-21 had a black seed coat and a green cotyledon. Four intermediate parents (883-1, 14G20, RS-5, and RS-21) had elite agronomic traits. The new intermediate parents developed through this study will be used to develop improved soybean cultivars with low contents of raffinose and stachyose.

Identification and Functional Characterization of the GALACTINOL SYNTHASE (MoGolS1) Gene in Melissa officinalis Plants

  • Kim, Jun-Hyeok;Hossain, Acktar Mohammad;Kim, Na-Hyun;Lee, Dong-Ho;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.244-251
    • /
    • 2011
  • Galactinol and rafinose accumulation in plants is associated with stressful environmental conditions such as cold, heat, or dehydration by the action of galactinols synthase (GolS) in the raffinose family of oligosaccharides biosynthetic pathway from UDP-galactose. Moreover, several reports mentioned that GolS transcription is up regulated by various environmental stresses like cold, heat, dehydration. Therefore, to determine whether MoGolS1 was induced with the abiotic stress we analyzed the expression pattern of the gene under various abiotic stresses like heat, cold, abscisic acid, sucrose and salt concentration in the lemon balm plants grown in standard MS medium. The MoGolS1 gene was 981-bp in length encoding 326 amino acids in its sequence and shared 77 and 76% sequence similarity with Arabidopsis thaliana galactinol synthase4 (AtGolS4) and AtGolS1 genes respectively. The MoGolS1 gene was strongly expressed by the abiotic stress induced by sucrose, ABA or heat shock. It was also expressed in responses to cold, Identification and Functional Characterization of the GALACTINOL SYNTHASgene induction with various stresses may be possible for itscrucial function in abiotic stress tolerance in plants, providing a good engineering target for genetic engineering.

${\alpha}$-Galactosidase from Bacillus megaterium VHM1 and Its Application in Removal of Flatulence-Causing Factors from Soymilk

  • Patil, Aravind Goud G.;Kumar S.K., Praveen;Mulimani, Veerappa H.;Veeranagouda, Yaligara;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1546-1554
    • /
    • 2010
  • A bacterial strain capable of producing extracellular ${\alpha}$-galactosidase was isolated from a sample of sugarcane industrial waste. Microbiological, physiological, and biochemical studies revealed that the isolate belonged to Bacillus sp. Furthermore, based on a 16S rDNA sequence analysis, the new isolate was identified as Bacillus megaterium VHM1. The production of ${\alpha}$-galactosidase was optimized based on various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen sources, respectively. The optimum pH was 7.5 and the enzyme remained stable over a pH range of 5-9. The enzyme was optimally active at $55^{\circ}C$ and thermostable with a half-life of 120 min, yet lost 90% of its residual activity within 120 min at $60^{\circ}C$. One mM concentrations of $Ag^2$, $Cu^2$, and $Hg^{2+}$ strongly inhibited the ${\alpha}$-galactosidase, whereas the metal ions $Fe^2$, $Mn^{2+}$, and $Mg^{2+}$ had no effect on the ${\alpha}$-galactosidase activity, and $Zn^{2+}$, $Ni^{2+}$, and $Ca^{2+}$ reduced the enzyme activity slightly. When treated with the B. megaterium VHM1 enzyme, the flatulence-causing sugars in soymilk were completely hydrolyzed within 1.5 h.

Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

  • Song, Chieun;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide ($H_2O_2$), and an endogenous $H_2O_2$ propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.