Degradation of Raffinose Oligosaccharides in Soymilk by Immobilized ${\alpha}$-Galactosidase of Aspergillus oryzae

  • Published : 2007.09.30

Abstract

[ ${\alpha}$ ]-Galactosidase was immobilized in a mixture of k-carrageenan and locust bean gum. The properties of the free and immobilized enzyme were then determined. The optimum pH for both the soluble and immobilized enzyme was 4.8. The optimum temperature for the soluble enzymes was $50^{\circ}C$, whereas that for the immobilized enzyme was $55^{\circ}C$. The immobilized enzyme was used in batch, repeated batch, and continuous modes to degrade the raffinose-family sugars present in soymilk. Two hours of incubation with the free and immobilized ${\alpha}$-galactosidases resulted in an 80% and 68% reduction in the raffinose oligo saccharides in the soymilk, respectively. In the repeated batch, a 73% reduction was obtained in the fourth cycle. A fluidized bed reactor was also designed to treat soymilk continuously and the performance of the immobilized ${\alpha}$-galactosidase tested at different flow rates, resulting in a 90% reduction of raffinose-family oligosaccharides in the soymilk at a flow rate 40 ml/h. Therefore, the present study demonstrated that immobilized ${\alpha}$-galactosidase in a continuous mode is efficient for reducing the oligosaccharides present in soymilk, which may be of considerable interest for industrial application.

Keywords

References

  1. Abdel-Naby, M. A., A. A. Sherif, A. B. El-Tanash, and A. T. Mankarios. 1999. Immobilization of A. oryzae tannase and properties of immobilized enzyme. J. Appl. Microb. 57: 108-114
  2. Arica, M. Y., N. G. Alaeddinoglu, and V. Hasirei. 1996. Immobilization of glucoamylase onto activated PHEMA/ EDGMA microspheres: Properties and applications into a packed bed reactor. Enz. Microb. Technol. 18: 281-285 https://doi.org/10.1016/0141-0229(95)00100-X
  3. Arruda, L. M. and M. Vitolo. 1999. Characterization of invertase entrapped into calcium alginate beads. Appl. Biochem. Biotech. 8: 23-33
  4. Ates, S. and U. Mehmetoglu. 1997. A new method for immobilization of $\beta$-galactosidase and its utilization in a plug flow reactor. Process Biochem. 32: 433-436 https://doi.org/10.1016/S0032-9592(96)00101-X
  5. Audet, P., C. Paquin, and C. Lacroix. 1988. Immobilized growing lactic acid bacteria with k-carrageenan. Appl. Microbiol. Biotech. 29: 11-18 https://doi.org/10.1007/BF00258344
  6. Barbesgaard, H., P. Hansen, and B. Diderichsen. 1992. On the safety of Aspergillus oryzae: A review. Appl. Microb. Biotech. 36: 569-572
  7. Batsavola, K., K. Kunchev, Y. Popova, A. Kozhukharova, and N. Kirova. 1987. Hydrolysis of lactose by $\beta$-galactosidase immobilized in polyvinylalcohol. Appl. Microbiol. Biotechnol. 26: 227-230 https://doi.org/10.1007/BF00286313
  8. Biranjan, J. R., D. R. Ingole, and S. R. Sanyal. 1987. Utility of soymilk in dietary therapy of undernourished children. Indian Med. Gaz. 9: 313-316
  9. Bodalo, A., E. Gomez, J. L. Gomez, J. Bastida, M. F. Maximo, and F. Diaz. 1991. A comparison of different methods of $\beta$-galactosidase immobilization. Process Biochem. 26: 349-353 https://doi.org/10.1016/0032-9592(91)85025-J
  10. Cetinus, S. A. and H. N. Oztop. 2003. Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme Microb. Technol. 32: 889-894 https://doi.org/10.1016/S0141-0229(03)00065-6
  11. Cruz, R. and Y. K. Park. 1982. Production of fungal $\alpha$-galactosidase and its application to the hydrolysis of galactooligosaccharides in soybean milk. J. Food Sci. 47: 1973-1975 https://doi.org/10.1111/j.1365-2621.1982.tb12925.x
  12. Cruz, R., J. C. Batistela, and G. Wosaiacki. 1981. Microbial $\alpha$-galactosidase for soymilk processing. J. Food Sci. 46: 1196-1200 https://doi.org/10.1111/j.1365-2621.1981.tb03022.x
  13. De Ruiter, G. A. and B. Rudolph. 1997. Carrageenan biotechnology. Trends Food Sci. Tech. 8: 389-395 https://doi.org/10.1016/S0924-2244(97)01091-1
  14. Dey, P. M. and J. B. Pridham. 1972. Biochemistry of $\alpha$-galactosidase. Adv. Enzym. 36: 911-930
  15. Dhananjay, S. K., S. K. Shankar, K. Girigowda, V. K. Naganagouda, and V. H. Mulimani. 2006. Reduction of flatus-inducing factors in soymilk by immobilized $\alpha$-galactosidase. J. Biotech. Appl. Biochem. 45: 51-57 https://doi.org/10.1042/BA20060027
  16. Girigowda, K. and V. H. Mulimani. 2006. Hydrolysis of galacto-oligosaccharides in soymilk by k-carrageenanentrapped $\alpha$-galactosidase from Aspergillus oryzae. World J. Microb. Biotech. 22: 437-442 https://doi.org/10.1007/s11274-005-9053-9
  17. Godbole, S. S., B. S. Kubal, and S. F. D'Souza. 1990. Hydrolysis of concentrated sucrose syrups by invertase immobilized on anion exchanger waste cotton thread. Enz. Microb.Technol. 12: 214-217 https://doi.org/10.1016/0141-0229(90)90041-N
  18. Mansour, E. H. and F. M. Dawoud. 2003. Immobilization of invertase on celite and on polyacrylamide by an absoption procedure. J. Sci. Food Agric. 83: 446-450 https://doi.org/10.1002/jsfa.1390
  19. McGhee, J., S. Robert, and E. B. Bagley. 1978. Production of $\alpha$-galactosidase from Aspergillus awamori; properties and action on para-nitrophenyl $\alpha$-D-galactopyranoside and galacto-oligosaccharide of soymilk. J. Am. Oil Chem. Soc. 55: 244-247 https://doi.org/10.1007/BF02676933
  20. Mulimani, V. H. and Ramalingam. 1995. Enzymic hydrolysis of raffinose and stachyose in soymilk by $\alpha$-galactosidase from Gibberella fujikuroi. Biochem Mol. Biol. Int. 36: 897-905
  21. Prashanth, S. J. and V. H. Mulimani. 2005. Soymilk oligosaccharide hydrolysis by Aspergillus oryzae $\alpha$-galactosidase immobilized in calcium alginate. Process Biochem. 40: 1199-1205 https://doi.org/10.1016/j.procbio.2004.04.011
  22. Ridout, M. J. and G. J. Brownsey. 1985. Rheological characterization of biopolymer mixed gels, pp. 577. In: Gums and Stabilizers for the Food Industry. Elsevier Applied Science Publishers, London
  23. Schnapp, J. and Y. Shalitin. 1976. Immobilization of enzymes by covalent binding to amine supports via cyanogens bromide activation. Biochem. Biophys. Res. Commun. 70: 8-14 https://doi.org/10.1016/0006-291X(76)91101-3
  24. Shivanna, B. D. and M. Ramakrishna. 1985. $\alpha$-Galactosidase from germinating guar (Cyamopsis tetragonolobus). J. Biosci. 9: 109-116 https://doi.org/10.1007/BF02716837
  25. Smith, A. K. and J. J. Circle. 1972. pp. 462-486. In: Soybeans: Chemistry and Technology. CN AVI Publishing Co., Westpost, CT, U.S.A
  26. Steggerda, F. R., E. A. Richards, and J. J. Rackis. 1974. Effects of various soybean products on flatulence in the adult man. Proc. Soc. Exp. Biol. Med. 121: 1235-1239
  27. Sugimoto, H. and J. P. V. Bureu. 1970. Removal of oligosaccharides from soymilk by an enzyme from Aspergillus saitoi. J. Food Sci. 35: 655-660 https://doi.org/10.1111/j.1365-2621.1970.tb04836.x
  28. Takata, I., T. Tosa, and I. Chibata. 1977. Screening of matrix suitable for immobilization of microbial cells. J. Solid-phase Biochem. 2: 225-236 https://doi.org/10.1007/BF02996744
  29. Tanaka, M., D. Thananunkul, T. C. Lee, and C. O. Chichester. 1975. A simplified method for the quantitative determination of sucrose, raffinose, and stachyose in legumes. J. Food Sci. 40: 1087-1088 https://doi.org/10.1111/j.1365-2621.1975.tb02274.x
  30. Thananunkul, D., M. Tanaka, C. O. Chichester, and T. C. Lee. 1976. Degradation of raffinose and stachyose in soybean milk by $\alpha$-galactosidase from Mortirella vinacea. Entrapment of $\alpha$-galactosidase within polyacrylamide gel. J. Food Sci. 41: 173-175 https://doi.org/10.1111/j.1365-2621.1976.tb01128.x
  31. Thippeswamy, S. and V. H. Mulimani. 2002. Enzymic degradation of raffinose family oligosaccharides in soymilk by immobilized $\alpha$-galactosidase from Gibberella fujikuroi. Process Biochem. 38: 635-640 https://doi.org/10.1016/S0032-9592(02)00010-9