• Title/Summary/Keyword: radwaste

Search Result 116, Processing Time 0.034 seconds

Studies on the Sorption Characteristics of $^{137}Cs$ onto Granite and Tuff ($^{137}Cs$의 화강암 및 응회암에 대한 흡착특성에 관한 연구)

  • Cho, Young-Hwan;Hahn, Pil-Soo;Park, Sang-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Batch sorption experiments were conducted to investigate the sorption characteristics of $^{137}$ Cs, known for the primary target of safety assessment in low-level radwaste disposal, onto domestic rocks such as Granite and Tuff. A response surface analysis method was applied to quantify the effect of 3 independent variables ([Cs], [Vol/Wt], [pH]) on the sorption. Ac a result, initial Cs concentration appeared to be the most important variable within the range of the study. A significant effect of [Vol/Wt] on Kd was observed. The sorption of Cs was pH-insignificant. The sorption extent of nuclides onto tuff was more significant than that onto granite. The pH-insignificant sorption behavior of Cs was discussed in terms of the surface electrical properties and the solution chemistry. The sorption tendency of nuclides onto geomedia studied was interpreted by adopting the water structure modification theory.

  • PDF

Performance of the Exhaust Filtration System of Hot Cell at PIEF (조사후시험시설에서의 핫셀 배기포집시스템의 성능평가)

  • Hwang, Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.799-804
    • /
    • 2011
  • Radioactivity of high concentrations have existed in the handling nuclear materials in hot cell of PIEF(Post Irradiation Examination Facility). The exhaust filtration system was enabled to process cylindrical filters by using a manipulator in the hot cell. By establishing a double filtration system with two filters, backup protection against leakage or failure of the first is provided by the second filter. Additionally, this a arrangement is arrange intended to increase the total filtration efficiency. The result of the pressure drop changing in the air flow of the cylindrical and HEPA filters is observed by a curved line. A filtering efficiency of more than 99.99% to $0.3{\mu}m$ particle appears in the upstream and downstream during the efficiency test on the HEPA filters. The V-pleats type had a lower pressure drop than the separator type. There was no damage during usage and was found to be suitable with high capacity of air volume. Therefore, by carrying out performance tests of the exhaust filtration system, efficiency and safety can be achieved.

Thermal behavior of groundwater-saturated Korean buffer under the elevated temperature conditions: In-situ synchrotron X-ray powder diffraction study for the montmorillonite in Korean bentonite

  • Park, Tae-Jin;Seoung, Donghoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1511-1518
    • /
    • 2021
  • In most countries, the thermal criteria for the engineered barrier system (EBS) is set to below 100 ℃ due to the possible illitization in the buffer, which will likely be detrimental to the performance and safety of the repository. On the other hand, if the thermal criteria for the EBS increases, the disposal density and the cost-effectiveness for the high-level radioactive wastes will dramatically increase. Thus, fundamentals on the thermal behavior of the buffer under the elevated temperatures is of crucial importance. Yet, the behaviors at the elevated temperatures of the bentonite under groundwater-saturated conditions have not been reported to-date. Here, we have developed an in-situ synchrotron-based method for the thermal behavior study of the buffer under the elevated temperatures (25-250 ℃), investigated dspacings of the montmorillonite in the Korean bentonite (i.e., Ca-type) at dry and KURT (KAERI Underground Research Tunnel) groundwater-saturated conditions (KJ-ii-dry and KJ-ii-wet), and compared the behaviors with that of MX-80 (i.e., Na-type, MX-80-wet). The hydration states analyzed show tri-, bi-, and mono-hydrated at 25, 120, and 250 ℃, respectively for KJ-ii-wet, whereas tri-, mono-, and de-hydrated at 25, 150, and 250 ℃, respectively for MX-80-wet. The Korean bentonite starts losing the interlayered water at lower temperatures; however, holds them better at higher temperatures as compared with MX-80.

Effect of Surface-Modification of Activated Carbon for Adsorption of Uranium in Radioactive Liquid Wastes (방사성 액체 폐기물 내 우라늄 흡착에 대한 활성탄의 표면 처리 영향)

  • Jang, J.D.;Lee, K.W.;Song, K.C.;Kang, H.;Oh, W.Z.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.827-835
    • /
    • 2000
  • Adsorption characteristics of uranium on activated carbon whose surface is modified with $HNO_3$ and/or NaOH were investigated. Na-OAC, which was the activated carbon treated with both $HNO_3$ and NaOH. showed higher adsorption capacity than OAC, which was treated with $HNO_3$, as well as Na-AC, which was treated with only NaOH. This can be explained based on the surface functional groups increased by surface modification of activated carbon and the change of solution pH as adsorption proceeds. From these experimental results, it is thought that the pH of uranium solution and surface functional groups on the activated carbon surface are the governing factors in the uranium adsorption system.

  • PDF

Thermohydromechanical Behavior Study on the Joints in the Vicinity of an Underground Disposal Cavern (심부 처분공동 주변 절리에서의 열수리역학적 거동변화)

  • Jhin wung Kim;Dae-seok Bae
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.171-191
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior on joints adjacent to a repository cavern, when high level radioactive wastes are disposed of within discontinuous granitic rock masses, and then, to contribute this understanding to the development of a disposal concept. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuels in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within a model. Joint set 1 includes joints of $56^{\circ}$ dip angle, spaced 20m apart, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of $34^{\circ}$ dip angle, spaced 20m apart. The two dimensional distinct element code, UDEC is used for the analysis. To understand the joint behavior adjacent to the repository cavern, Barton-Bandis joint model is used. Effect of the decay heat from PWR spent fuels on the repository model has been analyzed, and a steady state flow algorithm is used for the hydraulic analysis.

Development of in-situ Analysis System for Radwaste Glass Using Laser Induced Breakdown Spectroscopy (레이저유도 플라즈마분광법을 이용한 방사성폐기물 유리의 현장분석 시스템 개발)

  • 김천우;박종길;신상운;하종현;송명재;이계호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.137-146
    • /
    • 2004
  • Laser Induced Breakdown Spectroscopy(LIBS) system is being developed as an in-situ analysis system for the radioactive waste glass in the cold crucible melter. In order to complete the LIBS system, a spectrometer, a detector, and a laser were structured. An ESA 3000 (LLA Instruments GmbH, Germany) including a calibrated Kodak KAF-1001 CCD detector was selected as the spectrometer. A Q-switched Nd-YAG Brilliant(Quantel, France) laser was selected as an energy source. As the first research stage, the excitation temperatures of Fe(I) as a function of the detector's delay intervals(500, 1000, 1500, 2000ns) were evaluated using the Einstein-Boltzmann equation. The optimized excitation temperature of Fe (I) was 7820k at the delay time of 1500㎱ using the 532nm Nd-YAG laser pulse. This LIBS system will be optimized under the real environment vitrification facility in the near future and then used to be in-situ analyzed the glass compositions in the melter qualitatively.

  • PDF

Mechanical Stability Analysis of a High-Level Waste Repository for Determining Optimum Cavern and Deposition Hole Spacing (고준위폐기물 처분장의 최적 공동간격 및 처분공간격을 결정하기 위한 역학적 안정성 해석)

  • 박병윤;권상기
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.237-248
    • /
    • 2000
  • Based on the preliminary results from the therm analysis, which is currently carrying, three-dimensional computer simulations using a finite element code, ABAQUS Ver. 5.8, were designed to determine the mechanically stable cavern and deposition hole spacing. Linear elastic modeling for the cases with different cavern and deposition hole spacing were carried out under three different in situ stress conditions. From the simulations, the response of the rock to the stress redistribution after the excavation of the openings could be investigated. Also the optimum cavern and deposition hole spacing could be estimated based on the factor of safety. When the in situ stress determined from the actual stress measurements in Korea were used, the case with cavern spacing of 40m and deposition hole spacing of 3m was in very stable condition, because the factor of safety was calculated as 3.42., When the in situ stress conditions for Sweden and Canada were used, the previous case, they seem to be in stable condition, since the factors of safety are still higher than 1.0. From these results, it was concluded that the rock will not fail even after the stress redistribution.

  • PDF

A Theoretical Study on the Colloid-facilitated Radionuclide Transport with Decay Chain in the Fractured Rock (균열암반에서 방사성 붕괴사슬과 콜로이드를 동반한 방사성 핵종의 이동에 관한 이론적 연구)

  • 박진백;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.20-32
    • /
    • 2003
  • To understand the behavior of migration of contaminants in a fractured porous medium is a key to assure the overall safety of a potential radwaste repository. The feasible retention mechanism of contaminant transport in a tinctured medium are sorption of contaminants on solid surface and matrix diffusion of contaminants from a fracture into an adjacent porous medium. The acceleration mechanisms are the migration of contaminants in the form of pseudo-colloids and the limit of a volume f3r matrix diffusion. In this paper, the effects of these two acceleration mechanisms are studied mathematically, then semi-analytically computed by the application of the Talbot theorem and verified. Results indicate that the acceleration processes cannot be neglected in the modeling of contaminant transport in a fractured porous medium.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Assessment of Physicochemical Properties of Domestic Bentonite and Zeolite as Candidate Materials for a Engineered Barrier in a Radwaste Repository (방사성폐기물 처분장 공학방벽 재료로서의 국산 벤토나이트 및 제올라이트에 대한 물리화학적 특성 평가)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.89-100
    • /
    • 1999
  • This study was carried out to assess the physicochemical properties of domestic bentonites and zeolites from Tertiary Formation as the candidate material for a engineered barrier of a radioactive waste repository. Natural bentonite and zeolite samples were collected from nine bentonite mines and six zeolite mines in Yeonil-Gampo area. The commercial products of bentonite and zeolite were obtained from local companies. The collected samples were investigated to study the following physicochemical properties: X-ray diffraction patterns, swelling, cation exchange capacity(CEC), specific surface area, montmorillonite content, pH, organic carbon content, thermal property, microstruciure and chemical composition. Based on the physicochemical properties of bentonite and zeolite, the bentonites from U-41 and G-46 mines and the zeolites from Daedo and Y-1 mines are regarded as the most desirable candidate materials.

  • PDF