• Title/Summary/Keyword: radwaste

Search Result 116, Processing Time 0.021 seconds

국내원전 액체방사성폐기물계통 설계경험

  • 이병식;김길정
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-47
    • /
    • 2003
  • The performance of the Radwaste System is measured in terms of generation of waste volumes, the release of radioactive materials to the environment and the occupational radiation exposure to workers. Based on our design and operating experience from PWR plants, various design goals for liquid radwaste system were developed to improve system performance. It has been making continuous effort to develop the advanced liquid radwaste processing technology for new PWR plants since 1998. The primary goal of this effort was to obtain better performance and to design a more economical liquid radwaste system. This paper describes lesson learned experience from design of the liquid radwaste system in Korea Nuclear Power Plants.

  • PDF

Evaluation of cementation of intermediate level liquid waste produced from fission 99Mo production process and disposal feasibility of cement waste form

  • Shon, Jong-Sik;Lee, Hyun-Kyu;Kim, Tack-Jin;Kim, Gi-Yong;Jeon, Hongrae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3235-3241
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) is planning the construction of the KIJANG Research Reactor (KJRR) for stable supply of 99Mo. The Fission 99Mo Production Process (FMPP) of KJRR produces solid waste such as spent uranium cake and alumina cake, and liquid waste in the form of intermediate level liquid waste (ILLW) and low level liquid waste (LLLW). This study thus established the operating range and optimum operating conditions for the cementation of ILLW from FMPP. It also evaluated whether cement waste form samples produced under optimum operational conditions satisfy the waste acceptance criteria (WAC) of a disposal facility in Korea (Korea radioactive waste agency, KORAD). Considering economic feasibility and safety, optimum operational conditions were achieved at a w/c ratio of 0.55, and the corresponding salt content was 5.71 wt%. The cement waste form samples prepared under optimum operational conditions were found to satisfy KORAD's WAC when tested for structural stability and leachability. The results indicate that the proposed cementation conditions for the disposal of ILLW from FMMP can be effectively applied to KJRR's disposal facility.