• Title/Summary/Keyword: radius problem

Search Result 265, Processing Time 0.034 seconds

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Effect of Interference in CSMA/CA Based MAC Protocol for Underwater Network (CSMA/CA 기반 수중 통신망에서 간섭의 영향 연구)

  • Song, Min-je;Cho, Ho-shin;Jang, Youn-seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1631-1636
    • /
    • 2015
  • With the advance of wireless communication technology in terrestrial area, underwater communication is also evolving very fast from a simple point-to-point transmission to an elaborate networked communications. Underwater acoustic channel has quite different features comparing with the terrestrial radio channel in terms of propagation delay, Doppler shift, multipath, and path loss. Thus, existing technologies developed for terrestrial communication might not work properly in underwater channel. Especially medium access control (MAC) protocols which highly depend on propagation phenomenon should be newly designed for underwater network. CSMA/CA has drawn lots of attention as a candidate of underwater MAC protocol, since it is able to resolve a packet collision and the hidden node problem. However, a received signal could be degraded by the interferences from the nodes locating outside the receiver's propagation radius. In this paper, we study the effects of interference on the CSMA/CA based underwater network. We derived the SNR with the interference using the sonar equation and analyzed the degradation of the RTS/CTS effects. These results are compared with the terrestrial results to understand the differences. Finally we summarized the design considerations in CSMA/CA based underwater network.

A Development of Design Method for Deceleration Transition Curve Based on Vehicle Driving Characteristics (차량 주행특성을 고려한 감속 완화곡선 설계방법 개발)

  • Lee, Jeom-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-107
    • /
    • 2008
  • I study for design criteria and research about Interchange diverging area of express highway and freeway, the most recent, at interchange diversion of express highway and freeway, design criteria and researches are focus on safety guarantee a point of view movement dynamics of vehicle and road geometric as to transition section, deceleration section, curve radius, nose section, outflow angle etc, that is, design criteria and research of Interchange diverging area have not consider a point of view movement dynamics of vehicle and road geometric and driver, so that I will be focus characteristic of runing speed on trasion curve. and I will consider vehicle running speed characteristics and study problem of Interchange diverging area design criteria. For this study, First, analysis meaning about theory of now design criteria, Second, look at vehicle running speed and traffic accident characteristics of Interchange diverging area, Third, propose new deceleration transition curve design method get along vehicle running speed characteristics of Interchange diverging area. new deceleration transition curve design method put out new outcoums, that is, I definite cause to safety new deceleration transition curve design method better than pressently, used design criteria of Interchange diverging area, especially, deceleration transition curve design criteria produced good result in the running speed 50km/h, 40km/h, that is inertia better than inertia of present used design criteria. and deceleration transition curve is extended better than present transition curve criteria, so that new deceleration transition curve design method safety is good better than the past method safety.

  • PDF

Analysis of Shelter Service Areas According to Walking Speed Using Network Analysis (네트워크 분석을 이용한 보행속도에 따른 대피소 서비스 영역 분석)

  • Park, Jae Kook;Kim, Dong Moon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • There are approximately 25,724 shelters to which people can be quickly evacuated for safety in case of emergency across the nation, and Seoul has about 3,870 shelters. Those nationwide shelters are located at a point within a five-minute radius for quick evacuation. Seoul's shelter capacity can hold 285% of its population. The problem is, however, that there is no knowing how many shelters are reachable within five minutes when considering walking speed according to individual differences in age, height, health state, and physical condition. In addition, available service areas become different according to the spatial allocation and distribution of shelters with possible vulnerable points. This study thus defined the pedestrian walking speed at 1m/s, 1.3m/s, and 2m/s by reviewing previous studies and conducted network analysis of the Location Allocation Model with the designated shelters and road networks in Seoul. The results identified the shelter service and vulnerable areas in each administrative district of Seoul according to walking speeds. It was analyzed that the vulnerable areas in which the elderly could not reach a shelter were more than twice as big as those of adult men and women with a fast walking speed.

A Hole Self-Organization Real-Time Routing Protocol for Irregular Wireless Sensor Networks (비정형적인 무선 센서 네트워크에서 음영지역 자가 구성 실시간 라우팅 프로토콜)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.281-290
    • /
    • 2014
  • The real-time data dissemination schemes exploit the spatiotemporal commuication approach which forwards data at the delivery speed calculated with the desired time deadline and the end-to-end distance in wireless sensor networks (WSNs). In practical environments, however, the performance of the real-time data dissemination might be degraded by additional and inevitable delay due to some holes. Namely, the holes lengthen the data delivery path and the spatiotemporal approach could not estimate a distance of the data delivery path. To deal with this, we propose A Hole Self-Organization Real-time Routing Protocol for Irregular Wireless Sensor Networks. In proposed protocol, nodes around holes could detect them at deploying phase. A hole is represented as a circle with center point and radius. This hole information is processed and provided as a form of location service. When a source queries a destination location, location provider replies certain points for avoiding holes as well as destination location. Thus, the source could set desired speed toward the destination via the points. Performance evaluation shows that provides better real-time service in practical environments.

Establishment Model of Entrance and Exit User of Urban Railway Station (도시철도역 출입구 유출입 이용자 추정 모형 수립)

  • Kim, Hwang Bae;Lee, Sang Hwa;Bae, Choon Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.81-91
    • /
    • 2019
  • Although the number of users of urban railways is greatly influenced by the land use plan around the railway station, Korea has been studying this problem in a small scale, so that the entrance width is uniformly calculated irrespective of the land use plan, And there is little deviation. Therefore, this study aims to establish a demand estimation model for the entrance and exit of urban railway stations. For this purpose, the demand, land use area, and socioeconomic indicators for each of the 20 urban railway stations were surveyed at 200m and 500m Regression model. The model is based on the assumption that the dependent variable (response variable) of the model is set to 1 day, peak 1 hour, peak time 5 minutes, Education, and park) and socioeconomic indicators (population, employer, employee, and student) as independent variables (explanatory variables). As a result, it was analyzed that the fit of the model is more statistically significant when the use area of the land use by 500 meters of the center radius of the city rail is used as an independent variable and the demand for the daily use of the railway station is used as a dependent variable. The purpose of this study is to estimate the optimal size of urban railway entrance in order to improve the mobility of the user and the transportation weak in urban railway station.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Pytotoxicity by Continuous Spraying of Fruit Fire Blight Disinfectant During Growing Season of Apple and Pear (과수 화상병 방제약제의 사과·배 생육기 연용 살포에 의한 약해)

  • Se Hee Kim;Song-Hee Ryu;Byeonghyeon Yun;Kang Hee Cho;Sang-Yun Cho;Jung Gwan Park
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.100-106
    • /
    • 2023
  • In order to control the fire blight disease, all plants within the radius of the diseased orchard were removed in the early stage of the outbreak, or antibiotics control was performed for prevention. Since the beginning of antibiotics use on plants, the potential for development of resistance to antibiotics by the plant pathogen and unintended detrimental effects on the fruit trees and environment has become a problem. The purpose of this study is to determine the degree of phytotoxicity to fruit trees caused by excessive spraying of the fire blight disease disinfectant and to establish basic data for safe disinfectant guide. We analyzed whether damage to the fruit tree and the maximum residual limit of fruit was exceeded when three kinds of the fire blight disease disinfectants were continuously sprayed in excess of the number of safe use during the growing season. There was no phytotoxicity in apple 'Fuji' and pear 'Niitaka', and oxolinic acid was detected beyond the limit of quantitation in 'Fuji' grown without a bag, and the other disinfectants were detected below the maximum residue limit. When these disinfectants are continuously sprayed in excess of the number of safe, phytotoxicity may remain on the fruit. Therefore, it is necessary to observe the prescribed dilution factor and observe the safe frequency and the timing of use.