• Title/Summary/Keyword: radionuclides

Search Result 610, Processing Time 0.023 seconds

Proposal for the list of potential radionuclides of interest during NPP site characterization or final status surveys

  • Seo, Hyung-Woo;Oh, Jae Yong;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.234-243
    • /
    • 2021
  • In the research or project planning for the decommissioning of a nuclear power plant, one of several preparations will be the establishment of a list of potential radionuclides to be considered at the time of characterization or final status surveys. Reliable data for selection of potential radionuclides during the transition period to prepare for decommissioning will depend heavily on historical data at the site or, where possible, sampling analysis. However, during the transition period, direct sampling can be challenging, depending on the circumstances of the site or national regulation. A methodology of selecting potential radionuclides for nuclear facility sites which largely consists of three major processes: production of initial list of radionuclides, selection of the insignificant radionuclide that will be eliminated, and consideration of site characterization or sampling. For developing a preliminary list of potential radionuclides for Kori Unit 1 decommissioning, the list of initial radionuclides was made referring to the technical documents applied at decommissioned NPPs in the U.S and additional reference materials applied until the operation of NPPs in Korea. For the screening of insignificant radionuclides, we applied criterion of less than 0.1% of the amount of radioactivity inventory and confirmed the dose fraction using the RESRAD code. The final suit of radionuclides was established, which should be supplemented by reflecting site characterization and sampling process in the future. Thus, the methodology and results for the selection of potential radionuclides suggested in this paper can give an insight as a future reference to deriving DCGLs in relation to site remediation of decommissioning nuclear plants.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

Forty Years of Anthropogenic Radionuclides in Surface Seawater. Italian and Japanese Data

  • Cigna, Arrigo A.
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.261-290
    • /
    • 2006
  • The concentrations of man made radionuclides in surface seawater since early '60s are here reported as measured in Italy and Japan. Most of the data refers to $^{90}Sr$ and $^{137}Cs$, but occasionally the concentrations of $^{89}Sr$ and $^{134}Cs$ in some Italian samples are also given. The main sources of man made radionuclides were the global fallout produced by the nuclear weapon tests and the Chernobyl accident. The respective contributions to the contamination of surface seawater around both countries are discussed.

A SYSTEMS ASSESSMENT FOR THE KOREAN ADVANCED NUCLEAR FUEL CYCLE CONCEPT FROM THE PERSPECTIVE OF RADIOLOGICAL IMPACT

  • Yoon, Ji-Hae;Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.17-36
    • /
    • 2010
  • In this study, we compare the mass release rates of radionuclides(1) from waste forms arising from the KIEP-21 pyroprocessing system with (2) those from the directly-disposed pressurized-water reactor spent fuel, to investigate the potential radiological and environmental impacts. In both cases, most actinides and their daughters have been observed to remain in the vicinity of waste packages as precipitates because of their low solubility. The effects of the waste-form alteration rate on the release of radionuclides from the engineered-barrier boundary have been found to be significant, especially for congruently released radionuclides. the total mass release rate of radionuclides from direct disposal concept is similar to those from the pyroprocessing disposal concept. While the mass release rates for most radionuclides would decrease to negligible levels due to radioactive decay while in the engineered barriers and the surrounding host rock in both cases even without assuming any dilution or dispersal mechanisms during their transport, significant mass release rates for three fission-product radionuclides, $^{129}I$, $^{79}Se$, and $^{36}Cl$, are observed at the 1,000-m location in the host rock. For these three radionuclides, we need to account for dilution/dispersal in the geosphere and the biosphere to confirm finally that the repository would achieve sufficient level of radiological safety. This can be done only after we have known where the repository site would by sited. the footprint of repository for the KIEP-21 system is about one tenth of those for the direct disposal.

Evaluation of Internal Dosimetry according to Various Radionuclides Conditions in Nuclear Medicine Myocardial Scan: Monte Carlo Simulation (심근 핵의학 검사에서 다양한 방사성핵종 조건에 따른 내부피폭선량 평가: 몬테카를로 시뮬레이션)

  • Min-Gwan Lee;Chanrok Park
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2024
  • The myocardial nuclear medicine examination is widely performed to diagnose myocardium disease using various radionuclides. Although image quality according to radionuclides has improved, the radiation exposure for target organ as well as peripheral organs should be considered. Here, the aim of this study was to evaluate absorbed dose (Gy) for peripheral organs in myocardial nuclear medicine scan from myocardium according to various scan environments based on Monte Carlo simulation. The simulation environment was modeled 5 cases, which were considered by radionuclides, number of injections, and radiodosage. In addition, the each radionuclide simulation such as distribution fraction was considered by recommended standard protocol, and the mesh computational female phantom, which is provided by International Commission on Radiological Protection (ICRP) 145, was used using the particle and heavy ion transport code system (PHITS) version 3.33. Based on the results, the closer to the myocardium, the higher the absorbed dose values. In addition, application for dual injection for radionuclides leaded to high absorbed dose compared with single injection for radionuclide. Consequently, there is difference for absorbed dose according to radionuclides, number of injections, and radiodosage. To detect the accurate diseased area, acquisition for improved image quality is crucial process by injecting radionuclides, however, we need to consider absorbed dose both target and peripheral inner organs from radionuclides in terms radiation protection for patient.

Analysis of the Likelihood of Internal Radiation Exposure When Decommissioning a Nuclear Power Plant in Korea

  • Jiung Kim;Tae Young Kong;Seongjun Kim;Jinho Son;Changju Song;Jaeok Park;Seungho Jo;Hee Geun Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.141-145
    • /
    • 2024
  • In Publication No. 66 of the International Commission on Radiological Protection, an activity median aerodynamic diameter (AMAD) of 5 ㎛ is considered in internal exposure dose assessment owing to inhalation of radionuclides in a workplace. However, analysis of aerosols generated during dismantling experiments, such as in the oxy-cutting of a reactor vessel conducted in Korea, revealed that the radioactive aerosols have AMAD ranging from 0.024 to 0.064 ㎛. Such extremely fine aerosols can induce internal exposure if inhaled. In particular, alpha radionuclides in aerosols can lead to significantly higher levels of radiation exposure than beta and gamma radionuclides, thus highlighting the need to establish appropriate internal exposure radiation protection programs and monitoring systems that specifically address alpha radionuclides when decommissioning nuclear power plants in Korea.

Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases

  • Vasyanovich, Maxim;Vasilyev, Aleksey;Ekidin, Aleksey;Kapustin, Ivan;Kryshev, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1176-1179
    • /
    • 2019
  • Measurements of activity concentrations of radionuclides in atmospheric releases were performed in 2017-2018 at vent stacks of seven Russian nuclear power plants. The selected instruments and research methods, with detection limits significantly lower than the existing detection limit of Russian NPPs routine control, allowed to reliably determine up to 26 radionuclides. Analysis of experimental data allows to determine the list of radionuclides for calculation the effective dose rates to public and the permissible annual discharge levels for each Russian NPP. Radiocarbon is determined as major contributor for the dose from the atmospheric releases of LWGR reactors - up to 98% for EGP-6 and RBMK-1000 (Smolensk NPP) reactors. For PWR reactors (VVER) radionuclides contribution to the annual dose from atmospheric releases is more complicated, but, in general, dose is formed by tritium, $^{14}C$ and noble gases. The special monitoring results with ranking of measured radionuclides according to their contribution to the effective dose makes it possible to optimize the list of controlled radionuclides in airborne releases of Russian NPPs from 94 to 8-16 for different NPPs.

Assessment of Radionuclides(Co, Sr) Adsorption and Desorption Characteristics in Soil Using Modified Clay and Fish Bones (개질 점토 및 생선뼈를 이용한 토양 내 방사성 핵종(Co, Sr) 흡착 및 탈착 특성 평가)

  • Kang Kyungchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.58-70
    • /
    • 2023
  • The improper management of radioactive waste or accidents caused by natural disasters can result in the release of radioactive materials into the surrounding environment, potentially leading to soil and groundwater contamination by radionuclides. In this study, adsorption-desorption behaviors of the radionuclides (cobalt and strontium) in natural soil, montmorillonite, Mn-PILC, Fe-PILC, and fishbone were investigated. Several models were used to predict adsorption isotherms of radionuclides on various absorbents. Adsorption isotherms of cobalt and strontium in several adsorbents were examined at pH 5.5. The amount of sorbed cobalt and strontium were represented fishbone > natural soil > Mn-PILC > Fe-PILC > montmorillonite and natural soil > Mn-PILC > fishbone > Fe-PILC > montmorillonite, respectively. Adsorption datas were fitted with several models such as Freundlich, Langmuir, Sips, Redlich-Peterson, Khan, and Generalized model. The results of curve fitting showed R2> 0.98 in all of adsorption models, except Sr2+ adsorption onto montmorillonite. For modified clays (Mn-PILC, Fe-PILC), it is suggested that, unlike natural soils and fish bones, there are not only single adsorption mechanisms but also adsorption mechanisms based on chemical adsorption and surface charge. In the case of fish bones, due to the relatively higher adsorption capacity than modified clays and its characteristic of significant desorption, it is expected more suitable for the removal of radionuclides in aquatic environments than for the immobilization of radionuclides in soil.

Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics

  • Park, Tae-Jin;Choi, Young-Chul;Ham, Jiwoong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.363-372
    • /
    • 2020
  • Anionic radionuclides pose one of the highest risks to the long-term safety assessments of disposal repositories. Therefore, techniques to immobilize and separate such anionic radionuclides are of crucial importance from the viewpoints of safety and waste volume reduction. The main objective of this study is to design a separator with minimum pressure disturbance, based on the concept of a conventional cyclone separator. We hypothesize that the anionic radionuclides can be immobilized onto a nanomaterial-based substrate and that the particles generated in the process can flow via water. These particles are denser than water; hence, they can be trapped within the cyclone-type separator because of its design. We conducted particle tracking analysis using computational fluid dynamics (CFD) for the conventional cyclone separator and studied the effects due to the morphology of the separator. The proposed sandglass-like design of the separator shows promising results (i.e., only one out of 10,000 particles escaped to the outlet from the separation zone). To validate the design, we manufactured a laboratory-scale prototype separator and tested it for iron particles; the efficiency was ca. 99%. Furthermore, using an additional magnetic effect with the separator, we could effectively separate particles with ~100% efficiency. The proposed sandglass-like separator can thus be used for effective separation and recovery of immobilized anionic radionuclides.

Current status of research on radionuclides used in nuclear mediccine (중성자선 실험 및 발암연구의 현황과 미래)

  • Kim, Hui-Seon
    • Radioisotope journal
    • /
    • v.21 no.3
    • /
    • pp.46-60
    • /
    • 2006
  • In recent years the progress of nuclear medicine advanced dramatically in imaging and targeted radionuclide therapy is able to open op exciting perspectives as standard diagnostic and therapeutic modalities, complementing conventional modalities. Positron emission tomography/computed tomography (PET/CT) technology with FDG has been developed clinically in less than 10 years as a routine standard in oncological imaging, including a number of other fluorinated radiopharmaceuticals being evaluated for their ability to complement FDG. However, the limitation of FDG-PET such as non-specific uptake and its short half-life is not compatible with the time necessary for optimal tumour targeting. Therefore, a development of innovative positron-emitting radionuclides with half-lives longer than 10 h is needed. For therapeutic applications, the injection of higher activities is required to reach efficient adsorbed doses in radioresistant solid tumours, while limiting the irradiation of vital organs. In this application, the longer half-life of radiolsotopes are more fit well for radionuclide therapy. To achieve this, researches have to be carried in a largor spectrum of radionuclides for diagnosis and therapy. In the context of rapidly growing nuclear medicine and strong demanding innovative radionuclides, a high-energy (100 MeV), high-intensity (-mA) accelerator with proton (PEFF at KAFRI). will be operating in 2011. The priorities of PEFP will include supporting the nuclear medicine research community by providing those radionuclides with current limited availability by means of a high-energy, high-intensity accelerator.

  • PDF