• 제목/요약/키워드: radionuclides

검색결과 595건 처리시간 0.027초

Fundamental approach to development of plastic scintillator system for in situ groundwater beta monitoring

  • Lee, UkJae;Choi, Woo Nyun;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1828-1834
    • /
    • 2019
  • The performance of a plastic scintillator for use in an in situ measurement system was analyzed using simulation and experimental methods. The experimental results of four major pure beta-emitting radionuclides, namely $^3H$, $^{14}C$, $^{32}P$, and $^{90}Sr/^{90}Y$, were compared with those obtained using a Monte Carlo N-particle (MCNP) code simulation. The MCNP simulation and experimental results demonstrated good agreement for $^{32}P$ and $^{90}Sr/^{90}Y$, with a relative difference of 1.95% and 0.43% between experimental and simulation efficiencies for $^{32}P$ and $^{90}Sr/^{90}Y$, respectively. However, owing to the short range of beta particles in water, the efficiency for $^{14}C$ was extremely low, and $^3H$ could not be detected. To directly measure the low-energy beta radionuclides considering their short range, a system where the source could flow directly to the scintillator was developed. The optimal thickness of the plastic scintillator was determined based on the suggested diameter. Results showed that the detection efficiency decreases with an increase in the depth of the water. The detection efficiency decreased drastically to approximately 10 cm, and the tendency was gradually constant.

Radioactive iodine analysis in environmental samples around nuclear facilities and sewage treatment plants

  • Lee, UkJae;Kim, Min Ji;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1355-1363
    • /
    • 2018
  • Many radionuclides exist in normal environment and artificial radionuclides also can be detected. The radionuclides ($^{131}I$) are widely used for labeling compounds and radiation therapy. In Korea, the radionuclide ($^{131}I$) is produced at the Radioisotope Production Facility (RIPF) at the Korea Atomic Energy Research Institute in Daejeon. The residents around the RIPF assume that $^{131}I$ detected in environmental samples is produced from RIPF. To ensure the safety of the residents, the radioactive concentration of $^{131}I$ near the RIPF was investigated by monitoring environmental samples along the Gap River. The selected geographical places are near the nuclear installation, another possible location for $^{131}I$ detection, and downstream of the Gap River. The first selected places are the "front gate of KAERI", and the "Donghwa bridge". The second selected place is the sewage treatment plant. Therefore, the Wonchon bridge is selected for the upstream of the plant and the sewage treatment plant is selected for the downstream of the plant. The last selected places are the downstream where the two paths converged, which is Yongshin bridge (in front of the cogeneration plant). In these places, environmental samples, including sediment, fish, surface water, and aquatic plants, were collected. In this study, the radioactive iodine ($^{131}I$) detection along the Gap River will be investigated.

Estimation of radiostrontium, radiocesium and radiobarium transfer from arid soil to plant: A case study from Kuwait

  • Aba, Abdulaziz;Ismaeel, Anfal;Al-Boloushi, Omar
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.960-966
    • /
    • 2021
  • A technical approach to design and carry out an experiment to determine the uptake of selected radionuclides in site-specific conditions in Kuwait was developed and successfully executed for developing a radioecological decision support system. The radionuclides from soil-to-plant transfer factors have been obtained for leafy and non-leafy vegetables, and root crops cultivated in Kuwait. Two types of vegetated soils were selected and spiked with high concentrations of three relatively short-lived selected radionuclides (85Sr, 134Cs, and 133Ba). The highest strontium and barium transfer factors were found in the order: leafy vegetables > root crops > non-leafy vegetables. The approximate range of radiocesium transfer factor was found to be low in all plant groups and was comparable to those reported elsewhere in different soil types of temperate and tropical environments. A strong negative correlation between the obtained transfer factors and the distribution coefficient of the radionuclide in soil was found. It is recommended to adopt the newly derived parameters for the sensitive areas in Kuwait and other Gulf countries instead of using the generic parameters, whenever dose calculation codes are used. This will help to more accurately assess and predict the end results of the committed effective dose equivalent through ingestion pathway.

Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites

  • Dran'kov, Artur;Shichalin, Oleg;Papynov, Evgeniy;Nomerovskii, Alexey;Mayorov, Vitaliy;Pechnikov, Vladimir;Ivanets, Andrei;Buravlev, Igor;Yarusova, Sofiya;Zavjalov, Alexey;Ognev, Aleksey;Balybina, Valeriya;Lembikov, Aleksey;Tananaev, Ivan;Shapkin, Nikolay
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1991-2003
    • /
    • 2022
  • The problem of water contamination by long-living cesium and strontium radionuclides is an urgent environmental issue. The development of facile and efficient technologies based on nanostructured adsorbents is a perspective for selective radionuclides removal. In this regard, current work aimed to obtain the nanostructured magnetic zeolite composites with high adsorption performance to cesium and strontium ions. The optimal conditions of hydrothermal synthesis were established based on XRD, SEM-EDX, N2 adsorption-desorption, VSM, and batch adsorption experiment data. The role of chemical composition, textural characteristics, and surface morphology was demonstrated. The monolayer ionexchange mechanism was proposed based on adsorption isotherm modeling. The highest Langmuir adsorption capacity of 229.6 and 105.1 mg/g towards cesium and strontium ions was reached for composite obtained at 90 ℃ hydrothermal treatment. It was shown that magnetic characteristics of zeolite composites allowing to separate spent adsorbents by a magnet from aqueous solutions.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Accumulation and distribution of nutrients, radionuclides and metals by roots, stems and leaves of plants

  • Huynh Truc Phuong;Vu Ngoc Ba;Bui Ngoc Thien;Loan Truong Thi Hong
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2650-2655
    • /
    • 2023
  • In the process of growth and development, plants not only absorb essential nutritional elements, but also absorb radioactive and non-essential elements from the environment, and their distribution varies in different parts of the plant. In this study, neutron activation analysis and gamma spectrometry were performed on stems, roots, and leaves of vegetables. The results indicate that the accumulation of radionuclides and multi-elements depends on the plant type and plant parts. Activity concentrations of 226Ra and 232Th in plants were accumulated in the following order: Roots > Stems > Leaves. The highest concentrations of 40K and 210Pb were observed in the stems and leaves of plants, respectively. Essential nutrient requirements of plants are in the following order: K > Ca > Mg > Fe > Zn > Mn. Among the nonessential metals, the concentration of Na in the vegetable sample was much greater than those of the other elements. The K/Na ratio in the plant depends on the type of plant and the translocation within the plant.

균열 암반 매질에서 의사콜로이드에 의해 매개된 방사성 핵종의 이동에 대한 이론적 연구 (A Theoretical Study on the Radionuclide Transport Mediated by Pseudo-Colloid in the Fractured Rock Medium)

  • 백민훈;한필수;박헌휘
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.532-543
    • /
    • 1995
  • 의사콜로이드에 의해 매개된 균열 암반 매질에서의 방사성 핵종의 이동 거동을 분석하고 예측하기 위한 이동모델이 개발되었다. 명목적인 의사콜로이드 형성 상수인 $K_{ap}$ (㎥/kg)값이 100보다 클 때 방사성 핵종의 이동에 매우 큰 영향을 미치는 것으로 나타났다. 계산결과에 의하면 Pu-239의 의사콜로이드형성 상수가 Ni-63보다 크기 때문에 Pu-239의 이동이 Ni-63보다 빠른 것으로 나타났다 따라서 결론적으로 균열 암반에서의 방사성 핵종의 가속화는 방사성 핵종과 자연성 참콜로이드와의 의사콜로이드 형성에 따른 용액에서의 유동성 성분의 증가와 방사성 핵종들의 정지된 고체매질로의 흡착양 감소에 기인함을 알 수 있다.

  • PDF

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Assessment of radioactivity levels and radiation hazards in building materials in Egypt

  • Ahmed E. Abdel Gawad;Mohamed Y. Hanfi;Mostafa N. Tawfik;Mohammed S. Alqahtani;Hamed I. Mira
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.707-714
    • /
    • 2024
  • Different degrees of natural radioactivity found in quartz can have negative consequences on health. Quartz vein along the investigated Abu Ramad area, Egypt, had its natural radioactivity assessed. The HPGe spectrometer was used to determine the role played by the radionuclides 238U, 232Th, and 40K in the gamma radiation that was emitted, and the results showed that these concentrations are 484.64 ± 288.4, 36.8 ± 13.1 and 772.2 ± 134.6 Bq kg-1 were higher than the corresponding reported global limits of 33, 45, and 412 Bq kg-1 for each radionuclide (238U, 232Th, and 40K). Among the radiological hazard parameters, the excess lifetime cancer risk (ELCR) is estimated and it's mean value of ELCR (1.2) is higher than the permissible limit of 0.00029. The relationship between the radionuclides and the associated radiological hazard characteristics was investigated based on multivariate statistical methods including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA). According to statistical research, the radioactive risk of quartz is primarily caused by the 238U, 232Thand 40K. Finally, applying quartz to building materials would pose a significant risk to the public.

국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성 (Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea)

  • 정도환;김문수;주병규;홍정기;김동수;김현구;김혜진;박선화;한진석;김태승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.