DOI QR코드

DOI QR Code

Assessment of radioactivity levels and radiation hazards in building materials in Egypt

  • Ahmed E. Abdel Gawad (Nuclear Materials Authority) ;
  • Mohamed Y. Hanfi (Nuclear Materials Authority) ;
  • Mostafa N. Tawfik (Nuclear Materials Authority) ;
  • Mohammed S. Alqahtani (Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University) ;
  • Hamed I. Mira (Nuclear Materials Authority)
  • Received : 2023.09.28
  • Accepted : 2023.11.03
  • Published : 2024.02.25

Abstract

Different degrees of natural radioactivity found in quartz can have negative consequences on health. Quartz vein along the investigated Abu Ramad area, Egypt, had its natural radioactivity assessed. The HPGe spectrometer was used to determine the role played by the radionuclides 238U, 232Th, and 40K in the gamma radiation that was emitted, and the results showed that these concentrations are 484.64 ± 288.4, 36.8 ± 13.1 and 772.2 ± 134.6 Bq kg-1 were higher than the corresponding reported global limits of 33, 45, and 412 Bq kg-1 for each radionuclide (238U, 232Th, and 40K). Among the radiological hazard parameters, the excess lifetime cancer risk (ELCR) is estimated and it's mean value of ELCR (1.2) is higher than the permissible limit of 0.00029. The relationship between the radionuclides and the associated radiological hazard characteristics was investigated based on multivariate statistical methods including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA). According to statistical research, the radioactive risk of quartz is primarily caused by the 238U, 232Thand 40K. Finally, applying quartz to building materials would pose a significant risk to the public.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this research through the Research Group Program Under the Grant Number (R.G. P.2/588/44).

References

  1. K.G. Taylor, P.N. Owens, Sediments in urban river basins: a review of sediment-contaminant dynamics in an environmental system conditioned by human activities, J. Soils Sediments 9 (2009) 281-303, https://doi.org/10.1007/s11368-009-0103-z.
  2. M.Y. Hanfi, I.V Yarmoshenko, A.A. Seleznev, M.V. Zhukovsky, The gross beta activity of surface sediment in different urban landscape areas, J Radioanal Nucl Chem 321 (2019) 831-839. https://doi.org/10.1007/s10967-019-06657-9.
  3. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J. Prince Prakash Jebakumar, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach, Mar. Pollut. Bull. 97 (2015) 419-430, https://doi.org/10.1016/j.marpolbul.2015.05.058.
  4. M.Y. Hanfi, B.M. Emad, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, Natural radioactivity in the prospecting tunnel in Egypt: dose rate and risk assessment, Radiat. Phys. Chem. 187 (2021), 109555, https://doi.org/10.1016/j.radphyschem.2021.109555.
  5. UNSCEAR, SOURCES and EFFECTS of IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation, 2010.
  6. A. El-Taher, F. Alshahri, R. Elsaman, Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf, Appl. Radiat. Isot. 132 (2018) 95-104, https://doi.org/10.1016/j.apradiso.2017.11.022.
  7. I. Gaafar, M. Hanfi, L.S. El-Ahll, I. Zeidan, Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt, Appl. Radiat. Isot. 173 (2021), 109734, https://doi.org/10.1016/j.apradiso.2021.109734.
  8. M.Y. Hanfi, Radiological assessment of gamma and radon dose rates at former uranium mining tunnels in Egypt, Environ. Earth Sci. 0 (2019), https://doi.org/10.1007/s12665-019-8089-3.
  9. P. Bala, R. Mehra, R.C. Ramola, Distribution of natural radioactivity in soil samples and radiological hazards in building material of Una, Himachal Pradesh, J. Geochem. Explor. 142 (2014) 11-15, https://doi.org/10.1016/j.gexplo.2014.02.010.
  10. P. Bangotra, R. Mehra, R. Jakhu, K. Kaur, P. Pandit, S. Kanse, Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K, J. Geochem. Explor. 184 (2018) 304-310, https://doi.org/10.1016/j.gexplo.2017.05.002.
  11. S. Forkapic, J. Vasin, I. Bikit, D. Mrdja, K. Bikit, S. Mili, Correlations between soil characteristics and radioactivity content of Vojvodina soil, J. Environ. Radioact. 166 (2017) 104-111, https://doi.org/10.1016/j.jenvrad.2016.04.003.
  12. T. Kovacs, G. Szeiler, F. Fabian, R. Kardos, A. Gregoric, J. Vaupotic, Systematic survey of natural radioactivity of soil in Slovenia, J. Environ. Radioact. 122 (2013) 70-78, https://doi.org/10.1016/j.jenvrad.2013.02.007.
  13. R. Jakhu, R. Mehra, P. Bangotra, K. Kaur, H.M. Mittal, Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon, J. Geochem. Explor. 184 (2018) 296-303, https://doi.org/10.1016/j.gexplo.2017.03.002.
  14. F.C.A. Ribeiro, J.I.R. Silva, E.S.A. Lima, N.M.B. do Amaral Sobrinho, D.V. Perez, D. C. Lauria, Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties, J. Environ. Radioact. 182 (2018) 34-43, https://doi.org/10.1016/j.jenvrad.2017.11.017.
  15. A. Dolhanczuk-Srodka, Estimation of external gamma radiation dose in the area of Bory Stobrawskie forests (PL), Environ. Monit. Assess. 184 (2012) 5773-5779, https://doi.org/10.1007/s10661-011-2380-4.
  16. A. Navas, L. Gaspar, M. Lopez-Vicente, J. MacHin, Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees), Radiat. Meas. 46 (2011) 261-269, https://doi.org/10.1016/j.radmeas.2010.11.008.
  17. UNSCEAR, Exposures from natural radiation sources (Annex B), Sources and Effects of Ionizing Radiation (2000) 84-141, https://doi.org/10.1097/00004032-199907000-00007.
  18. M.Y. Hanfi, A.E. Abdel Gawad, A.M. Abu-Donia, H.A. Abu Khoziem, H.I. Mira, M. U. Khandaker, M.S. Alqahtani, A.Sh.M. Elshoukrofy, Risk assessment and rare metals mineralization associated with alteration aspects of Rhyolite flow tuffs, Egypt, Radiat Phys Chem 215 (2024), 111379. https://doi.org/10.1016/j.radphyschem.2023.111379.
  19. A. Shahrokhi, M. Adelikhah, S. Chalupnik, T. Kovacs, Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece, Mar. Pollut. Bull. 163 (2021), https://doi.org/10.1016/j.marpolbul.2021.112009.
  20. M.Y. Hanfi, A.E. Abdel Gawad, K.G. Ali, A. Abu-Donia, K.G. Alsafi, M.A. Khafaji, S. K. Albahiti, M.S. Alqahtani, M. Khalil, A.A. Abdel Wahed, Environmental risk assessment associated with acidic volcanics in Egypt, Appl Radiat Isot 188 (2022), 110413. https://doi.org/10.1016/j.apradiso.2022.110413.
  21. A.A. Abdel-Meguid, M. Cuney, S.E. Ammar, T.M. Ibrahim, K.G. Ali, H.A. Shahin, S. A. Omer, I.M. Gaafar, S.M. Masoud, A.A. Khamis, M.H. Haridy, A.I. Kamel, B. M. Mostafa, A.M. Abo Donia, A.E. Abdel Gawad, E.M. Aly, Uranium Potential of Eastern Desert Granites, Egypt. Internal Report for Project: EGY/03/014, Technical Assistance by (IAEA), 2003, p. 270.
  22. T.M. Ibrahim, T.E. Amer, K.G. Ali, S.A. Omar, Uranium potentiality and its extraction from El Sela shear zone, south Eastern Desert Egypt, in: Faculity of Science, vol. XXI, Minufia University, 2007, pp. 1-18.
  23. I. Gaafar, M. Cuney, A.E. Abdel Gawad, Mineral chemistry of two-mica granite rare metals: impact of geophysics on the distribution of uranium mineralization at El Sela shear zone. Egypt, Open J. Geol. 4 (2014) 137-160, https://doi.org/10.4236/ojg.2014.44011.
  24. M.Y. Hanfi, M.S. Masoud, F. Ambrosino, M.Y.A. Mostafa, Natural radiological characterization at the Gabal El Seila region (Egypt), Appl. Radiat. Isot. 173 (2021) (2012), 109705.
  25. A.E. Abdel Gawad, A.H. Orabi, M.B. Bayoumi, Uranium evaluation and its recovery from microgranite dike at G. El Sela area, South Eastern Desert. Egypt, Arab J. Geosci. (2015) 4565-4580, https://doi.org/10.1007/s12517-014-1499-3.
  26. K.G. Ali, Structural control of El Sela granites and associated uranium deposits, south Eastern Desert, Egypt, Arab J. Geosci. 6 (6) (2013) 1753-1767, https://doi.org/10.1007/s12517-011-0489-y.
  27. Y.A. Abdel-Razek, M.S. Masoud, M.Y. Hanafi, M.S. El-Nagdy, Study of the parameters affecting radon gas flux from the stream sediments at Seila area Southeastern desert, Egypt, Environ. Earth Sci. 73 (2015) 8035-8044.
  28. A.E. Abdel Gawad, E.M. Ibrahim, Activity ratios as a technique for studying uranium mobility at El Sela shear zone, southeastern Desert, Egypt, J. Radioanal. Nucl. Chem. (2016) 129-142.
  29. M.M. Ghoneim, E.G. Panova, A.E. Abdel Gawad, S.Y. Yanson, Morphological and geochemical features of zircon from intrusive rocks of El Sela area, Eastern Desert, Egypt, News Ural State Min. Univ. 3 (59) (2020) 7-18, https://doi.org/10.21440/2307-2091-2020-3-7-18. С.
  30. A.H. El-Afandy, A.M. El-Kammar, A.E. Abdel Gawad, T.R. Nasr, Distribution of radionuclides in uraniferous two-mica granites and their environmental impact at El Sela shear zone, Southern Eastern Desert, Egypt, Nuclear Sciences Scientific Journal (2018) 135-149.
  31. N.S. Abed, M.G. El Feky, A. El-Taher, E.E.S. Massoud, M.R. Khattab, M. S. Alqahtani, E.S. Yousef, M.Y. Hanfi, Geochemical conditions and factors Controlling the distribution of major, trace, and rare elements in Sul Hamed granitic rocks, southeastern desert, Egypt, Minerals 12 (2022) 1245, https://doi.org/10.3390/min12101245.
  32. T. Sedki, H.A. Mohamed, S. Ali, R. Zaki, S. Afeed, Geology and ore genesis data of Elba manganese deposits, southern Eastern Desert, Egypt, Data Brief 27 (2019) (2019), 104831.
  33. M.M. Ghoneim, A.E. Abdel Gawad, H.A. Awad, H.M.H. Zakaly, H.I. Mira, A. El-Taher, Distribution patterns of natural radioactivity and rare earth elements in intrusive rocks (El Sela area, Eastern Desert, Egypt), Int. J. Environ. Anal. Chem. (2021) 1-14, https://doi.org/10.1080/03067319.2021.1916006.
  34. H.A. Eliwa, C. Breitkreuz, M. Murata, I.M. Khalaf, B. Buhler, T. Itaya, T. Takahashi, Y. Hirahara, T. Miyazaki, J.I. Kimura, T. Shibata, Y. Koshi, Y. Kato, H. Ozawa, M. A. Daas, K. El Gameel, SIMS zircon U-Pb and mica K-Ar geochronology, and Sr-Nd isotope geochemistry of Neoproterozoic granitoids and their bearing on the evolution of the north Eastern Desert, Egypt, Gondwana Res. 25 (2014) 1570-1598, https://doi.org/10.1016/j.gr.2013.06.006.
  35. A.E. Abdel Gawad, S.G. Skublov, E.V. Levashova, M.M. Ghoneim, Geochemistry and U-Pb age dating of zircon as a petrogenetic tool for magmatic and hydrothermal processes in Wadi Ras Abda syenogranite, Eastern Desert, Egypt, Arabian J. Sci. Eng. (2021), https://doi.org/10.1007/s13369-021-06319-7.
  36. R.J. Stern, D. Gottfried, Petrogenesis of a late precambrian (575-600 Ma) bimodal suite in Northeast Africa, Contrib. Mineral. Petrol. 92 (1986) 492-501, https://doi.org/10.1007/BF00374431.
  37. B.H. Ali, SHRIMP U-Pb zircon geochronology: evidence for emplacement time of some granitoids north Eastern Desert, Egypt, Arabian J. Geosci. 8 (2015) 5465-5474, https://doi.org/10.1007/s12517-014-1608-3.
  38. S.G. Skublov, A.E. Abdel Gawad, E.V. Levashova, M.M. Ghoneim, U-Pb geochronology, REE and trace element geochemistry of zircon from El Fereyid monzogranite, south Eastern Desert, Egypt, J. Mineral. Petrol. Sci. 116 (2021) 220-233, https://doi.org/10.2465/jmps.210320.
  39. V. Ruzicka, Vein uranium deposits, Ore Geol. Rev. 8 (1993) 247-276.
  40. N.S. Botros, Genesis of Gold mineralization in the north Eastern Desert, Egypt, Ann. Geol. Surv. Egypt 25 (1995) 381-409.
  41. M. Stevko, P. Uher, M. Ondrejka, D. Ozdin, P. Bacik, Quartz-apatite-REE phosphates-uraninite vein mineralization near Cucma (eastern Slovakia): a product of early Alpine hydrothermal activity in the Gemeric Superunit,Western Carpathians, J. Geosci. 59 (2014) 209-222.
  42. M.M. Ghoneim, A.E. Abdel Gawad, Vein-type uranium mineralization in the Eastern Desert of Egypt, News UGGU. Issue 1 (49) (2018) 33-38, https://doi.org/10.21440/2307-2091-2018-1-33-38.
  43. S. Ferenc, M. Stevko, T. Mikus, S. Milovska, R. Kopacik, E. Hoppanova, Primary minerals and age of the hydrothermal quartz veins containing U-Mo-(Pb, Bi, Te) mineralization in the Majersk' a valley near Cucma (Gemeric Unit, SpisskoGemerske Rudohorie Mts., Slovak Republic), Minerals 2021 11 (2021) 629, https://doi.org/10.3390/min11060629.
  44. A.E. Abdel Gawad, K.G. Ali, A.A. Abdel Wahed, K. Alsafi, M. Khafaji, S. Albahiti, M. Khalil, M.S. Masoud, M.Y. Hanfi, Excess lifetime cancer risk associated with granite bearing radioactive minerals and valuable metals, Monqul area, North Eastern Desert, Egypt, Materials 15 (2022) (2022) 4307, https://doi.org/10.3390/ma15124307.
  45. A.E. Abdel Gawad, A. Ene, S.G. Skublov, A.K. Gavrilchik, M.A. Ali, M.M. Ghoneim, A.V. Nastavkin, Trace element geochemistry and genesis of beryl from Wadi Nugrus, south Eastern Desert, Egypt, Minerals 12 (2022) 206, https://doi.org/10.3390/min12020206.
  46. B. Merdano, Radioactivity concentrations and dose assessment for soil samples from kestanbol granite area, Radiat Prot Dosimetry 121 (2006) 399-405, https://doi.org/10.1093/rpd/ncl055.
  47. IAEA, Preparation and Certification of IAEA Gamma-Ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1, Iaea-Rl-148 48, 1987.
  48. A. Papadopoulos, G. Christofides, A. Koroneos, L. Papadopoulou, C. Papastefanou, S. Stoulos, Natural radioactivity and radiation index of the major plutonic bodies in Greece, J. Environ. Radioact. 124 (2013) 227-238, https://doi.org/10.1016/j.jenvrad.2013.06.002.
  49. R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, Measurement of natural radioactivity in building materials of Namakkal , Tamil Nadu , India using gamma-ray spectrometry, Appl. Radiat. Isot. 70 (2012) 699-704, https://doi.org/10.1016/j.apradiso.2011.12.001.
  50. R.D. Senthilkumar, R. Narayanaswamy, Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses, J Radiat Res Appl Sci 9 (2016) 449-456, https://doi.org/10.1016/j.jrras.2016.07.002.
  51. Y.A. Abdel-Razek, M.S. Masoud, M.Y. Hanfi, M.S. El-Nagdy, Effective radiation doses from natural sources at Seila area South Eastern Desert, Egypt, J. Taibah Univ. Sci. 10 (2016) 271-280, https://doi.org/10.1016/j.jtusci.2015.06.010.
  52. K. Asaduzzaman, F. Mannan, M.U. Khandaker, Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings, 2015, pp. 1-16, https://doi.org/10.1371/journal.pone.0140667.
  53. S. Sivakumar, A. Chandrasekaran, G. Senthilkumar, M. Suresh Gandhi, R. Ravisankar, Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach, Iran J Sci Technol Trans A Sci 42 (2018) 601-614, https://doi.org/10.1007/s40995-017-0184-2.
  54. S. Yasmin, B.S. Barua, M.U. Khandaker, M. Kamal, A. Rashid, S.F.A. Sani, H. Ahmed, B. Nikouravan, D.A. Bradley, The presence of radioactive materials in soil , sand and sediment samples of potenga sea beach area , Chittagong , Bangladesh : geological characteristics and environmental implication, Results Phys. (2018), https://doi.org/10.1016/j.rinp.2018.02.013.
  55. S. Yalcin, O. Gurler, The radioactivity measurements in soil, coal and water in south Marmara region of Turkey, Radiat. Meas. 42 (2007) 281-285, https://doi.org/10.1016/j.radmeas.2006.12.009.
  56. A.A. Qureshi, S. Tariq, U. Kamal, S. Manzoor, C. Calligaris, A. Waheed, ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan, J Radiat Res Appl Sci 7 (2014) 438-447, https://doi.org/10.1016/j.jrras.2014.07.008.
  57. J.J. Heckman, R. Pinto, P.A. Savelyev, Natural elemental concentrations and Fluxes: their Use as indicators of Repository Safety, SKI Report 97 (29) (2002) 29, 97.
  58. F. Yalcin, N. Ilbeyli, M. Demirbilek, M.G. Yalcin, A. Gunes, A. Kaygusuz, S. F. Ozmen, Estimation of natural radionuclides' concentration of the plutonic rocks in the Sakarya zone, Turkey using multivariate statistical methods, Symmetry (Basel) 12 (2020) 1-18, https://doi.org/10.3390/sym12061048.
  59. USEPA, EPA Radiogenic Cancer Risk Models and Projections for the, U . S . Population, 2011.
  60. M.J. Abedin, M.R. Karim, M.U. Khandaker, M. Kamal, S. Hossain, M.H.A. Miah, D. A. Bradley, M.R.I. Faruque, M.I. Sayyed, Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment, Radiat. Phys. Chem. 177 (2020), 109165, https://doi.org/10.1016/j.radphyschem.2020.109165.
  61. A.M.A. Adam, M.A.H. Eltayeb, Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan, J. Environ. Radioact. 107 (2012) 23-43, https://doi.org/10.1016/j.jenvrad.2011.11.021.
  62. I. Tanaskovic, D. Golobocanin, N. Miljevic, Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters, J. Geochem. Explor. 112 (2012) 226-234, https://doi.org/10.1016/j.gexplo.2011.08.014.