• 제목/요약/키워드: radioisotope application

검색결과 92건 처리시간 0.023초

An investigation of excretion of calcium from female mice ingested with boron by using neutron activation analysis

  • Sun, Gwang Min;Lee, Jaegi;Uhm, Young Rang;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2581-2584
    • /
    • 2020
  • Boron has been considered to play a nutritionally important role in humans and animals, but its biochemical functions are not clearly understood. Though there are signs that boron affects the mineral and hormone metabolisms, there is no comprehensive epidemiological evidence establishing a relationship between a boron intake and osteoporosis due to the excretion of calcium in the bones. In this study, we investigated the influence of boron intake on the calcium excretion of old female mice in the menopause. The concentrations of calcium in backbone, thigh bone, blood, kidney, liver, and spleen were investigated by using instrumental neutron activation analysis.

Development of fission 99Mo production process using HANARO

  • Lee, Seung-Kon;Lee, Suseung;Kang, Myunggoo;Woo, Kyungseok;Yang, Seong Woo;Lee, Junsig
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1517-1523
    • /
    • 2020
  • The widely used medical isotope technetium-99 m (99mTc) is a daughter of Molybdenum-99 (99Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235U). 99mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures. Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major 99Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for 99Mo production, as well as the development of various 99Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea. At the same time, the development of fission-based 99Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission 99Mo using HANARO, KAERI's 30 MW research reactor, was described.

Development of long-term irradiation testing technology at HANARO

  • Choo, Kee Nam;Yang, Seong Woo;Park, Seng Jae;Shin, Yoon Taeg
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.344-350
    • /
    • 2021
  • As the High Flux Advanced Neutron Application Reactor (HANARO) has been recently required to support new R&D relevant to future nuclear systems requiring a much higher neutron fluence, the development of irradiation capsule technology for long-term irradiation testing was performed in three steps (3, 5, 10 dpa). At first, several design improvements of a standard capsule were suggested based on a failure analysis of the capsule and successfully applied for irradiation testing at HANARO at up to eight reactor operation cycles equivalent to 3 dpa. Based on a schematic stress analysis of the vulnerable parts of the previous capsule, an optimized design of the capsule was made for 5 dpa irradiation. The newly designed capsule was safely out-pile tested up to 450 days, which was equivalent to 5 dpa irradiation in the reactor. The test results were submitted to the Reactor Safety Review Committee of HANARO and irradiation testing for 5 dpa was approved. The capsule was also successfully out-pile tested to evaluate the possibility of irradiation testing for 10 dpa. For a higher neutron fluence exceeding 10 dpa, new capsule technologies, including a new capsule that has a different bottom design and neutron flux boosting capsule, were also suggested.

치료용 방사성동위원소 (Therapeutic radionuclides)

  • 최선주;홍영돈;이소영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

99mTc(CO)3-Labeled Histidine-Arylpiperazines as Potential Radiotracers for a Neuroreceptor Targeting

  • Choi, Kang-hyuk;Hong, Young-Don;Choi, Ok-Ja;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1189-1193
    • /
    • 2006
  • In order to develop radiopharmaceuticals for targeting a serotonin receptor such as $5-HT_{1A}$, histidine-$C_n$-arylpiperazines (AP) (C = alkyl, n = 2, 3, 4) were prepared in five steps with yields of 25%, 37% and 51%, respectively, and radiolabeled with the $[^{99m}Tc(CO)_3(H_2O)+3]^+$. The $^{99m}Tc(CO)_3$-Histidine-Cn-APs were prepared with a high yield (>99%) and characterized as a tridentate complex with a neutral charge to pass through the blood-brain barrier (BBB). The rhenium complexes with $Re(CO)_3$ were also synthesised and comparative experiments were achieved to evaluate the nature of the $^{99m}Tc$ complexes.

Rhenium-188 생산 (Production of Re-188)

  • 양승대;서용섭;김상욱;임상무
    • 대한핵의학회:학술대회논문집
    • /
    • 대한핵의학회 1999년도 제38차 춘계학술대회
    • /
    • pp.189-192
    • /
    • 1999
  • $^{188}Re$ (${\beta}^-=2.2$ MeV; ${\gamma}^-$=155 keV; $T_{1/2}$=16.9 hours) is an attractive therapeutic radioisotope which is produced from decay of reactor-produced tungsten-188 parent ($T_{1/2}$=69 days). $^{188}W$ has been produced from the double neutron capture reaction of $^{186}W.\;^{188}Re$ can be easily obtained by elution of saline on alumina based $^{188}W/^{188}Re$ generator, which is commercially available. Complexes labelled with $^{188}Re$ have been developed for the radiotherapy treatment of diseases because of the desirable nuclear properties of the radioisotope and it's chemical properties similar to those of technetium, a well established diagnostic agent.

  • PDF

RADIATION SAFETY STUDIES AT TOHOKU UNIVERSITY CYRIC

  • Yamadera M. Baba A.;Miura T.;Aoki T.;Hagiwara M.;Kawata N.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.231-236
    • /
    • 2001
  • A brief introduction is presented on the radiation safety studies at Tohoku University Cyclotron & Radioisotope Center. Studies on two subject are described; (1) measurement of the thick target neutron yield and radioisotope production / activation cross section for ten's of MeV neutrons and ions using K=110 Tohoku University cyclotron to provide basicdata for accelerator shielding, and (2) development of techniques for high sensitive radiation detection and profile measurement using an Imaging Plate which is a high sensitive two-dimensional radiation sensor. Application of the Imaging Plate techniques to localization of very weak radioactivity and to neutron profile measurement is described.

  • PDF

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

Rapid Synthesis of Arylpiperazine Derivatives for Imaging 5-HT1A Receptor under Microwave Irradiation

  • Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Hyo-Sun;Park, Kyung-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1701-1705
    • /
    • 2005
  • We have established an efficient method for the synthesis of the arylpiperazine derivatives in which the acylation of 2-aminopyridine, the coupling reaction of the acyl compound with piperazines, and reduction of the arylpiperazines were performed under a microwave irradiation (300 W) to afford the corresponding target compounds in quantitative yields. In all cases, the reaction times were remarkably reduced when compared with those of the conventional method.

우수방사성의약품 생산시설 개발 (Development of Good Manufacturing facility for Radiopharmaceuticals)

  • 신병철;정원명;박상현;이규일;박경배;박진호
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권2호
    • /
    • pp.145-149
    • /
    • 2003
  • Manufacturing facilities of the pharmaceuticals must meet certain level of the cleanness required so that foreign substances such as dust, moisture, heat, microorganism, or virus do not contaminate the product. In case of radiopharmaceuticals for medical treatment and diagnosis, not only should the operators and environment be protected from radiation but also need to be isolated from the foreign contaminant. Therefore, manufacturing facilities for radiopharmaceuticals must satisfy the design standards of both hot cell and clean room which are specified by GMP. However, standards of maintaining negative pressure for preventing spread of radioactive contaminant in isolated facilities conflict with the standards of maintaining positive pressure for keeping cleanness. To solve this problem, air pressure of hot cell was designed lower than in the adjacent area to meet standards of the radiation safety. To keep higher cleanness in certain part of the hot cell for filling, minimal relative positive pressure allows. In order to effectively maintain the cleanness that is required for production of Tc-99m generator, which takes 70% of whole demand of radiopharmaceuticals, the rooms placed in each side of production room are used as a buffer area and three lead hot cells are installed in production room. In this research, we established the appropriate engineered design concept for Tc-99m generator manufacturing facility, which satisfies both GMP cleanness standard for preventing particles, bacteria, other contaminants and the regulations of radiation safety for supervising and controlling the amount of radiation exposure and exhausted radioactivity. And the concept of multi-barrier buffer zones is introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room.