• Title/Summary/Keyword: radioactive waste repository

Search Result 322, Processing Time 0.025 seconds

Surface Modification of Bentonite for the Improvement of Radionuclide Sorption

  • Hong, Seokju;Kim, Jueun;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

A Numerical Model for Steady State Groundwater Flow Near a Radioactive Waste Repository (방사성폐기물 처분장 주변에서 정상상태의 지하수 수치 모델 개발)

  • Suh, Kyung Suk;Lee, Han Soo;Han, Kyung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.103-112
    • /
    • 1989
  • A numerical model for Steady state groundwater flow has been established to understand the groundwater flow phenomena near a radioactive waste repository. The integrated finite difference method based on a network composed of nodes and members was applied to investigate groundwater flow in homogeneous, heterogeneous and layered media. Its numerical solution was in good agreement with analytic solution. Physical phenomena associated in the groundwater flow depending on both hydraulic characteristics and effects of fractured zone were also investigated. A method by which feasible groundwater flow paths can be identified was developed. This method used the composite network for the geologic media near a repository and the direction of computed groudwater velocity. Groundwater velocity and travel time were predicted for the possible pathway form a repository to a biosphere.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Statistical Methodologies for Scaling Factor Implementation: Part 1. Overview of Current Scaling Factor Method for Radioactive Waste Characterization

  • Kim, Tae-Hyeong;Park, Junghwan;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.517-536
    • /
    • 2020
  • The radionuclide inventory in radioactive waste from nuclear power plants should be determined to secure the safety of final repositories. As an alternative to time-consuming, labor-intensive, and destructive radiochemical analysis, the indirect scaling factor (SF) method has been used to determine the concentrations of difficult-to-measure radionuclides. Despite its long history, the original SF methodology remains almost unchanged and now needs to be improved for advanced SF implementation. Intense public attention and interest have been strongly directed to the reliability of the procedures and data regarding repository safety since the first operation of the low- and intermediate-level radioactive waste disposal facility in Gyeongju, Korea. In this review, statistical methodologies for SF implementation are described and evaluated to achieve reasonable and advanced decision-making. The first part of this review begins with an overview of the current status of the scaling factor method and global experiences, including some specific statistical issues associated with SF implementation. In addition, this review aims to extend the applicability of SF to the characterization of large quantities of waste from the decommissioning of nuclear facilities.

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Basic Physicochemical and Mechanical Properties of Domestic Bentonite for Use as a Buffer Material in a High-level Radioactive Waste Repository

  • Cho, W.J.;Lee, J.O.;Chun, K.S.;Hahn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.39-50
    • /
    • 1999
  • The physicochemical, mineralogical, hydraulic, swelling and mechanical properties of a domestic bentonite for use as the buffer material in a high-level waste repository have been measured. The bentonite is identified to be a Ca-bentonite, and the hydraulic conductivity of the compacted bentonite with the dry density higher than 1.4 Mg/㎥ is lower than 10$^{-11}$ m/s When the dry densities are 1.4 to 1.8 Mg/㎥, the swelling pressures are in the range of 6.6 to 143.5 kg/$\textrm{cm}^2$. The unconfined compressive strength is about 94 kg/$\textrm{cm}^2$, and the coefficient of volume change and the coefficient of consolidation are in the range of 0.O0249 to 0.02142 $m^2$/MN and 0.018 to 0.115$m^2$/year, respectively.

  • PDF

Longevity Issues in Swelling Clay as a Buffer Material for a HLW Repository (고준위폐기물처분장 완충재물질로서 팽윤성 점토의 장기건전성과 주요 고려사항)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • A swelling clay should remain physically and chemically stable for a long time to perform its functions as a buffer material of a high-level waste (HLW) repository. The longevity issues in the swelling clay were reviewed to evaluate their importance in the performance of a repository. The review results suggest that an elevated temperature due to decay heat, groundwater chemistry, high pH environment by concrete, organic matter and microbes, radiation, and mechanical disturbance might significantly affect the long-term performance of a swelling clay as a buffer material. This paper will be used as basic informations to design the swelling clay buffer for a HLW repository.

  • PDF

Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study

  • Ryu, Je Ir;Woo, Seung Min;Lee, Manseok;Yoon, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.130-137
    • /
    • 2022
  • In the geological repository of radioactive nuclear waste, anaerobic corrosion can generate hydrogen, and may conservatively lead to the production of hydrogen-air layer. The accumulated hydrogen may cause a hazardous flame propagation resulting from any potential ignition sources. This study numerically investigates the processes of ignition and flame propagation in the layered mixture. Simple geometry was chosen to represent the geological repository, and reactive flow simulations were performed with different ignition power, energy, and locations. The simulation results revealed the effects of power and energy of ignition source, which were also analyzed theoretically. The mechanism of layered flame propagation was suggested, which includes three stages: propagation into the hydrogen area, downward propagation due to the product gas, and horizontal propagation along the top wall. To investigate the effect of the ignition source location, simulations with eight different positions were performed, and the boundary of hazardous ignition area was identified. The simulation results were also explained through scaling analysis. This study evaluates the potential risk of the accumulated hydrogen in geological repository, and illustrates the layered flame propagation in related ignition scenarios.

AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

  • Kwon, S.;Cho, W.J.;Lee, J.O.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.