• 제목/요약/키워드: radioactive waste

검색결과 6,492건 처리시간 0.041초

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Repurposing a Spent Nuclear Fuel Cask for Disposal of Solid Intermediate Level Radioactive Waste From Decommissioning of a Nuclear Power Plant in Korea

  • Mah, Wonjune;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.365-369
    • /
    • 2022
  • Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate-level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky ;Muhammad S. Mansy;A.A. El-Sadek ;Yousif M. Mousa ;Yasser T. Mohamed
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.238-247
    • /
    • 2023
  • The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

방사성폐기물 인증프로그램의 검토 및 적용 (Review and Application of the Radioactive Waste Certification Program)

  • 정희준;황주호;이재민;김헌;정의영
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 추계 학술대회 논문집
    • /
    • pp.126-133
    • /
    • 2005
  • 국내 중${\cdot}$저준위 방사성폐기물 처분을 위한 처분부지 확보 및 관련업무가 활발히 진행 중이다. 방사성폐기물 처분을 위해서는 방사성폐기물의 물리화학적, 방사학적 상태 및 건전성 등을 확보하여야 하며 폐기물 발생자는 이러한 정보를 처분사업자에게 제공해야한다. 또한 처분 안전성을 확보하기 위하여 방사성폐기물 인수기준(Waste Acceptance Criteria : WAC) 및 처분부지 특성을 고려한 세부인수기준(Site Specific Waste Acceptance Criteria : SWAC)이 필요하며 방사성폐기물을 이 기준에 적합하게 처리${\cdot}$생성${\cdot}$관리 및 인도하여야 한다. [1] 이를 위해서는 각각의 방사성폐기물에 대한 특성평가를 수행하여야 하나 원자력발전소의 경우 방사성폐기물 발생량이 많아 현실적으로 어려움이 있다. 이러한 문제점을 해결하기 위해 IAEA 및 해외 주요 국가는 방사성폐기물 인증체계(Waste Certification Program : WCP) 및 품질보증체계(Quality Assurance Program : QAP)를 개발하여 활용하고 있으며[2,3] 이를 바탕으로 국내 방사성폐기물의 안전한 처분을 위해 과기부고시 2005-18호 '중저준위 방사성폐기물 인도규정' 및 세부인수기준(시안)을 만족할 수 있는 방사성폐기물 인증프로그램을 개발하였다. 또한 방사성폐기물 인증체계 조기 도입 및 운영을 위해서 상용원전 관련 절차서 개정 및 실무자 교육을 추진 중이다.

  • PDF

경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출 (The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility)

  • 김린아;도호석;김태만;조천형
    • 방사성폐기물학회지
    • /
    • 제18권2_spc호
    • /
    • pp.317-325
    • /
    • 2020
  • 한국원자력환경공단은 처분시설 내 1단계 인수·저장구역의 인수검사 공간 및 드럼 취급 공간 부족에 대한 문제를 해결하기 위하여 방폐물검사건물을 건설하여 저장·처리능력을 확충할 예정이다. 본 연구에서는 MCNP 코드를 이용하여 방폐물검사건물 내 저장구역에서 취급하는 해체 방사성폐기물 대상 신형처분용기를 대상으로 작업종사자의 피폭선량을 평가하였다. 평가결과, 시설 내 저장 가능한 최대 용기 개수(304개)와 방사선작업에 대한 연간 예상 작업시간(약 306시간)에 대하여 연간 집단선량은 총 84.8 man-mSv로 계산되었다. 시설 내 총 304개의 신형처분용기(소형/중형 타입)가 저장 완료된 시점에서 인수검사, 처분검사를 위한 작업종사자의 투입인력은 총 25명, 작업종사자 당 예상피폭선량은 연평균 3.39 mSv로 산출되었다. 소형용기 취급 시 작업종사자의 고방사선량 작업에 따른 작업효율과 방사선적 안전성 확보를 위해서는 콘크리트 라이너의 두께를 증가시키는 추가적인 차폐가 필요할 것으로 평가되었다. 향후 본 연구를 바탕으로 실측기반의 해체폐기물의 선원항과 특성을 활용하여 방사선작업 당 작업시간 및 투입인력을 산출함으로써 작업종사자의 최적의 방사선작업조건을 도출할 수 있을 것으로 사료된다.