• Title/Summary/Keyword: radio noise

Search Result 718, Processing Time 0.022 seconds

Sampling Jitter Effect on a Reconfigurable Digital IF Transceiver to WiMAX and HSDPA

  • Yu, Bong-Guk;Lee, Jae-Kwon;Kim, Jin-Up;Lim, Kyu-Tae
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.326-334
    • /
    • 2011
  • This paper outlines the time jitter effect of a sampling clock on a software-defined radio technology-based digital intermediate frequency (IF) transceiver for a mobile communication base station. The implemented digital IF transceiver is reconfigurable to high-speed data packet access (HSDPA) and three bandwidth profiles: 1.75 MHz, 3.5 MHz, and 7 MHz, each incorporating the IEEE 802.16d worldwide interoperability for microwave access (WiMAX) standard. This paper examines the relationship between the signal-to-noise ratio (SNR) characteristics of a digital IF transceiver with an under-sampling scheme and the sampling jitter effect on a multichannel orthogonal frequency-division multiplexing (OFDM) signal. The simulation and experimental results show that the SNR of the OFDM system with narrower band profiles is more susceptible to sampling clock jitter than systems with relatively wider band profiles. Further, for systems with a comparable bandwidth, HSDPA outperforms WiMAX, for example, a 5 dB error vector magnitude improvement at 15 picoseconds time jitter for a bandwidth of WiMAX 3.5 MHz profile.

Performance Improvements of Energy Detector for Spectrum Sensing in Cognitive Radio Environments: Verification using Multiple Antennas (인지무선환경에서 스펙트럼 센싱을 위한 에너지 검출기의 성능개선: 다중안테나를 이용한 확인과정)

  • Baek, Jun-Ho;Oh, Hyeong-Joo;Lee, Jong-Hwan;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.38-42
    • /
    • 2008
  • In this paper, we propose a new structure for spectrum sensing which employs multiples energy detectors in multiple antenna system in order to improve its reliability. The performance is analyzed by simulation and compared to that of the conventional energy detector. The simulation results shows that the performance of the proposed scheme is much better than that of the conventional one. Additionally, the performance of is described in terms of ROC curve.

Management of Neighbor Cell Lists and Physical Cell Identifiers in Self-Organizing Heterogeneous Networks

  • Lim, Jae-Chan;Hong, Dae-Hyoung
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • In this paper, we propose self-organizing schemes for the initial configuration of the neighbor cell list (NCL), maintenance of the NCL, and physical cell identifier (PCI) allocation in heterogeneous networks such as long term evolution systems where lower transmission power nodes are additionally deployed in macrocell networks. Accurate NCL maintenance is required for efficient PCI allocation and for avoiding handover delay and redundantly increased system overhead. Proposed self-organizing schemes for the initial NCL configuration and PCI allocation are based on evolved universal terrestrial radio access network NodeB (eNB) scanning that measures reference signal to interference and noise ratio and reference symbol received power, respectively, transmitted from adjacent eNBs. On the other hand, the maintenance of the NCL is managed by adding or removing cells based on periodic user equipment measurements. We provide performance analysis of the proposed schemes under various scenarios in the respects of NCL detection probability, NCL false alarm rate, handover delay area ratio, PCI conflict ratio, etc.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Efficient Interference Control Technology for Vehicular Moving Networks

  • Oh, Sung-Min;Lee, Changhee;Lee, Jeong-Hwan;Park, Ae-Soon;Shin, Jae Sheung
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.867-876
    • /
    • 2015
  • This paper proposes an efficient interference control scheme for vehicular moving networks. The features of the proposed scheme are as follows: radio resources are separated into two resource groups to avoid interference between the cellular and vehicle-to-vehicle (V2V) links; V2V links are able to share the same radio resources for an improvement in the resource efficiency; and vehicles can adaptively adjust their transmission power according to the interference among the V2V links (based on the distributed power control (DPC) scheme derived using the network utility maximization method). The DPC scheme, which is the main feature of the proposed scheme, can improve both the reliability and data rate of a V2V link. Simulation results show that the DPC scheme improves the average signal-to-interference-plus-noise ratio of V2V links by more than 4 dB, and the sum data rate of the V2V links by 15% and 137% compared with conventional schemes.

A Study on Digital Phase-Frequency Modulation System for Mobile Radio Communications (디지틀 이동무선통신을 위한 위상일주파수 혼합 변조방식에 관한 연구)

  • 홍현성;조성준;김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.122-136
    • /
    • 1986
  • In this paper, the new modulation system, the digital phase-frequency hybrid modulation system is proposed for mobile radio communications. The error rate and the outage equation of PFSK(Phase-Frequency Shift Keying) signal transmitted through the fading channel has been derived considiering deversity techniques. The error rate and the outgae rate performances of PFSK system have been evaluated and shown in figures in terms of carrier-to-noise power ratio(CNR), fading figure, numbers of diversity branches, correlation coefficient among the diversity branches. And the performance of PFSK system is superior to that of QDPSK system. And by using diversity techniques, system performances can be improved 13dB above in CNR.

  • PDF

A Study on the Interference of HF Radiocommunication by the PLC (전력선통신이 단파대 해상이동통신에 미치는 영향에 관한 연구)

  • Kim, Jeong-Nyun;Jeong, Seok-Yeong;Jo, Hag-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2005
  • 본 연구는 2005. 7. 1 시행 공포된 전파법 시행령 개정안 내용 중 전력선통신설비의 주파수 대역이 9kHz${\sim}$450kHz에서 그 상한선 범위가 30MHz까지 확대 시행됨과 관련하여 전력선통신설비가 단파대 무선통신에 혼신을 야기할 수 있음에 따라 그 영향여부를 평가하는 방법을 제시하고 향후 전력선통신설비를 운용함에 있어서 단파대 무선통신에 영향을 회피하기 위한 대책방안을 제안하는데 있다. 전력선통신의 운용주파수 확대와 관련하여 정보통신부 전파연구소에서 전력선통신이 단파대 무선통신의 혼신여부에 대하여 측정 관찰해 왔으며 그 간섭정도를 판단하기 위해 노력해 왔다. 본 연구에서는 전파수신기, 신호발생기 및 SINAD(Signal to Noise and Distortion) Meter를 사용한 측정방법을 제시하고 있으며 이는 무선(RF : Radio Frequency) 환경에 적합한 측정방법으로 기존의 EMC(electromagnetic compatibility) 환경에 의한 한계를 극복할 수 있다. 또한, 본 연구에서는 전력선통신설비가 단파대 해상이동통신에 영향을 최소화하기 위하여 보호구역을 설정 또는 해당 주파수에 대하여 운용금지하는 방안을 제시함으로써 무선통신환경을 보호하는데 그 목적이 있다.

  • PDF

Traffic Analysis of a Cognitive Radio Network Based on the Concept of Medium Access Probability

  • Khan, Risala T.;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.602-617
    • /
    • 2014
  • The performance of a cognitive radio network (CRN) solely depends on how precisely the secondary users can sense the presence or absence of primary users. The incorporation of a spatial false alarm makes deriving the probability of a correct decision a cumbersome task. Previous literature performed this task for the case of a received signal under a Normal probability density function case. In this paper we enhance the previous work, including the impact of carrier frequency, the gain of antennas on both sides, and antenna heights so as to observe the robustness against noise and interference and to make the correct decision of detection. Three small scale fading channels: Rayleigh, Normal, and Weibull were considered to get the real scenario of a CRN in an urban area. The incorporation of a maximal-ratio combining and selection combing with a variation of the number of received antennas have also been studied in order to achieve the correct decision of spectral sensing, so as to serve the cognitive users. Finally, we applied the above concept to a traffic model of the CRN, which we based on a two-dimensional state transition chain.

Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results

  • Ju, Chanyoung;Son, Hyoung Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.125-137
    • /
    • 2020
  • Tracking micro-sized insects is one of the challenges of protecting ecosystems and biodiversity. In this study, we propose an approach for the autonomous tracking of micro-sized flying insects, and develop an unmanned aerial vehicle (UAV)-based robotic system. The Kalman filter is applied to the received signal strength emitted from radio telemetry to estimate the position while reducing the measurement error and noise. The autonomous tracking strategy is a method in which the UAV rotates at one point to measure the signal strength and control its position in the strongest direction of the signal. We also design a system architecture comprising a tracking sensor system and a UAV system for micro-sized insects. The estimation and autonomous tracking of the target position by the proposed system are verified and evaluated through dynamic simulation. Therefore, in this study, we propose and validate a UAV-based tracking system for micro-sized flying insects, which has not been proposed in studies conducted thus far.

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.