• Title/Summary/Keyword: radio frequency transmission

Search Result 453, Processing Time 0.026 seconds

A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes

  • Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, a frequency tunable double band-stop resonator (BSR) with voltage control by varactor diodes is suggested. It makes use of a half-wavelength shunt stub as its conventional basic structure, which is replaced by the distributed LC block. Taking advantage of the nonlinear relationship between the frequency and electrical length of the distributed LC block, a dual-band device can be designed easily. With two varactor diodes, the stop-band of the resonator can be easily tuned by controlling the electrical length of the resonator structure. The measurement results show the tuning ranges of the two operating frequencies to be 1.82 GHz to 2.03 GHz and 2.81 GHz to 3.03 GHz, respectively. The entire size of the resonator is $10mm{\times}11mm$, which is very compact.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

Least squares decoding in binomial frequency division multiplexing

  • Myungsup Kim;Jiwon Jung;Ki-Man Kim
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.277-290
    • /
    • 2023
  • This paper proposes a method that can reduce the complexity of a system matrix by analyzing the characteristics of a pseudoinverse matrix to receive a binomial frequency division multiplexing (BFDM) signal and decode it using the least squares (LS) method. The system matrix of BFDM can be expressed as a band matrix, and as this matrix contains many zeros, its amount of calculation when generating a transmission signal is quite small. The LS solution can be obtained by multiplying the received signal by the pseudoinverse matrix of the system matrix. The singular value decomposition of the system matrix indicates that the pseudoinverse matrix is a band matrix. The signal-to-interference ratio is obtained from their eigenvalues. Meanwhile, entries that do not contribute to signal generation are erased to enhance calculation efficiency. We decode the received signal using the pseudoinverse matrix and the removed pseudoinverse matrix to obtain the bit error rate performance and to analyze the difference.

Measurement of 18GHz Radio Propagation Characteristics in Subway Tunnel for Train-Wayside Multimedia Transmission (지하철 터널에서의 18GHz 무선영상신호 전파특성 측정)

  • Choi, Kyu-Hyoung;Seo, Myung-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.364-369
    • /
    • 2012
  • This paper presents an experimental study on the radio propagation characteristics in subway tunnel at 18GHz frequency band which has been assigned to video transmission between train and wayside. The radio propagation tests are carried out in the subway tunnel of Seoul Metro using the antenna and communication devices of the prototype video transmission system. The measurement results show that 18GHz radio propagation in subway tunnel has smaller path loss than that of general outdoor radio environment. It is also cleared that the arch-type tunnels have smaller radio propagation losses than rectangular tunnels, and single track tunnels have smaller pass loss than double track tunnels. From the measurements, the radio propagation coverage is worked out as 520 meters. The curved tunnels which cannot have LOS communication between transmitter and receiver have large pass losses and fluctuation profile along distance. The radio propagation coverage along curved tunnels is worked out as 300 meters. These investigation results can be used to design the 18GHz radio transmission system for subway tunnel by providing the optimized wayside transmitter locations and handover algorithm customized to the radio propagation characteristics in subway tunnels.

Throughput Enhancement of C-RAN based on Adaptive Frequency Reuse

  • Lin, Zhi-feng;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.83-85
    • /
    • 2016
  • C-RAN (Cloud Radio Access Network) structure is the most popular approach for 5G stander, it employs CoMP (Coordinated Multiple Points Transmission/Reception) to enhance frequency utilization and increase throughput for cell-edge users. C-RAN mainly includes two parts: baseband units (BBU) and remote radio heads (RRH). In this paper we propose a new resource block allocation (spectrum allocation) scheme by the permutation and combination of BBUs, and we also use the CoMP (Coordinated Multiple Points Transmission/Reception) technique according to the different environment to improve the spectrum utilization and reduce resource waste in different environment. The simulation results expound that the scheme significantly enhances throughput and improves the spectrum utilization.

Impedance Matching Characteristic Research Utilizing L-type Matching Network

  • Jun Gyu Ha;Bo Keun Kim;Dae Sik Junn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.64-71
    • /
    • 2023
  • If an impedance mismatch occurs between the source and load in a Radio Frequency transmission system, reflected power is generated. This results in incomplete power transmission and the generation of Reflected Power, which returns to the Radio Frequency generator. To minimize this Reflected Power, Impedance matching is performed. Fast and efficient Impedance matching, along with converging reflected power towards zero, is advantageous for achieving desired plasma characteristics in semiconductor processes. This paper explores Impedance matching by adjusting the Vacuum Variable Capacitor of an L-type Matching Module based on the trends observed in the voltage of the Phase Sensor and Electromotive Force voltage. After assessing the impedance matching characteristics, the findings are described.

  • PDF

Performance Evaluation of Co-channel Digital Radio-relay Systems (동일 채널방식을 이용한 디지털 무선 중계시스템의 성능평가)

  • 이형수;이일근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.288-299
    • /
    • 1996
  • The co-channel digital radio-relay system improves effectively the use of radio frequency allocations by transmitting signals separately on both orthogonal allocations, and thereby not only the total transmission capacity of frequency band but also its bandwidth effciency are almost doubled, compared tothe interleaved digital radio-relay system. Therefore, the study on the development and application of the con-channel scheme is of importance, for the efficient use of limited frequency bnad. In this paper, we derived the eqations for calculating fade margin as a function of path length as well as error performance in terms of the outage probability for co-channel digital radio-relay system below 10GHz. And, simulation was given to demonstrate how to apply those equations to the real situation.

  • PDF

Analysis of Crosstalk Reduction by Metal Filled Via Hole Fence in Bent Transmission Lines (구부러진 전송선에서 비아 홀 펜스에 의한 누화 감소 해석)

  • Kim Jong-Ho;Han Jae-Kwon;Park Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1036-1042
    • /
    • 2005
  • The crosstalk between bent transmission lines and the effects of additional trace with the metal filled via holes on alleviating the crosstalk are investigated using the circuit concept approach for transmission line sections and impedance modeling for via hole sections. All sections are represented by ABCD matrices and then cascaded. Finally the calculated results by proposed method are confirmed that they agree with the measured results in less than 3 dB except a band of low frequency.

PSNR Enhancement in Image Streaming over Cognitive Radio Sensor Networks

  • Bahaghighat, Mahdi;Motamedi, Seyed Ahmad
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.683-694
    • /
    • 2017
  • Several studies have focused on multimedia transmission over wireless sensor networks (WSNs). In this paper, we propose a comprehensive and robust model to transmit images over cognitive radio WSNs (CRWSNs). We estimate the spectrum sensing frequency and evaluate its impact on the peak signal-to-noise ratio (PSNR). To enhance the PSNR, we attempt to maximize the number of pixels delivered to the receiver. To increase the probability of successful image transmission within the maximum allowed time, we minimize the average number of packets remaining in the send buffer. We use both single- and multi-channel transmissions by focusing on critical transmission events, namely hand-off (HO), No-HO, and timeout events. We deploy our advanced updating method, the dynamic parameter updating procedure, to guarantee the dynamic adaptation of model parameters to the events. In addition, we introduce our ranking method, named minimum remaining packet best channel selection, to enable us to rank and select the best channel to improve the system performance. Finally, we show the capability of our proposed image scrambling and filtering approach to achieve noticeable PSNR improvement.

Compact Multi-harmonic Suppression LTCC Bandpass Filter Using Parallel Short-Ended Coupled-Line Structure

  • Wang, Xu-Guang;Yun, Young;Kang, In-Ho
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.254-262
    • /
    • 2009
  • This paper presents a novel simple filter design method based on a parallel short-ended coupled-line structure with capacitive loading for size reduction and ultra-broad rejection of spurious passbands. In addition, the introduction of a cross-coupling capacitor into the miniaturized coupled-line can create a transmission zero at the second harmonic frequency for better frequency selectivity and attenuation level. The aperture compensation technique is also applied to achieve a strong coupling in the coupled-line section. The influence of using the connecting transmission line to cascade two identical one-stage filters is studied for the first time. Specifically, such a two-stage bandpass filter operating at 2.3 GHz with a fractional bandwidth of 10% was designed and realized with low-temperature co-fired ceramic technology for application in base stations that need high power handling capability. It achieved attenuation in excess of -40 dB up to $4f_0$ and low insertion loss of -1.2 dB with the size of 10 mm ${\times}$ 7 mm ${\times}$ 2.2 mm. The measured and simulated results showed good agreement.