• 제목/요약/키워드: radiative cooling

검색결과 123건 처리시간 0.03초

Parameterization for Longwave Scattering Properties of Ice Clouds with Various Habits and Size Distribution for Use in Atmospheric Models

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • 대기
    • /
    • 제23권1호
    • /
    • pp.39-45
    • /
    • 2013
  • A parameterization for the scattering of longwave radiation by ice clouds has been developed based on spectral scattering property calculations with shapes and sizes of ice crystals. For this parameterization, the size distribution data by Fu (1996) and by Michell and Arnott (1994) are used. The shapes of ice crystal considered in this study are plate, solid column, hollow column, bullet-rosette, droxtal, aggregate, and spheroid. The properties of longwave scattering by ice crystals are presented as a function of the extinction coefficient, single-scattering albedo, and asymmetry factor. The heating rate and flux by the radiative parameterization model are calculated for wide range of ice crystal sizes, shapes, and optical thickness. The results are compared with the calculated results using a six-stream discrete ordinate scattering algorithm and Chou's method. The new method (with various habits and size distributions) provides a good simulation of the scattering properties and cooling rate in optically thin clouds (optical thickness < 5). Depending on the inclusion of scattering by ice clouds, the errors in the calculation of the cooling rates are significantly different.

연소기 노즐확장부 제작 및 재료 기술 동향 (A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber)

  • 이금오;유철성;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.505-509
    • /
    • 2011
  • 액체 로켓 엔진의 연소기는 높은 온도의 연소가스를 발생시키므로 연소실과 노즐은 열적으로 보호되어야 한다. 상단용 엔진의 노즐확장부는 큰 노즐 팽창비를 갖기 때문에 무게가 발사체 성능에 미치는 영향이 크므로 경량 내열 소재가 개발되어 사용되어 왔다. 가스 냉각 방식과 흡열 냉각 방식은 이전에는 널리 사용되었으나 지금은 잘 사용되지 않았으며, 니오븀 합금이나 니켈 기반 초합금, 세라믹 복합재를 사용하는 복사 냉각 방식은 지금까지도 발사체 상단에 많이 사용되고 있었다.

  • PDF

막냉각을 고려한 로켓엔진 연소실 열전달 비정상 해석 (Transient Analysis on Heat Transfer of Rocket Engine Combustion Chamber Considering Film-cooling)

  • 하성업;문일윤;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.867-868
    • /
    • 2011
  • LOx/케로신 로켓엔진 연소시 연소실로 전달되는 열전달과 그에 따른 벽온도 변화를 비정상 해석하였다. 막냉각이 없는 경우와 연료 막냉각이 있는 경우를 계산하였으며, 연소실 내측의 대류, 복사는 로켓엔진에 대한 경험식을 이용하였고, 벽 내부의 전도는 2차원 축대칭의 형태로 수치해석 하였다. 본 해석을 통하여 막냉각 냉각효과에 의한 벽면 온도의 시간에 따른 변화, 최대온도 지점의 변화등을 분석하였다.

  • PDF

The milli-arcsecond scale radio properties of central AGNs in cool-core and non cool-core clusters

  • Baek, Junhyun;Chung, Aeree;Tremou, Evangelia;Sohn, Bongwon;Jung, Taehyun;Ro, Hyunwook
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.68.4-69
    • /
    • 2016
  • We report preliminary results of KaVA observations of central galaxies in cool-core and non cool-core clusters. The main goal is to study how cooling environments of galaxy clusters affect the central AGN activities especially at its innermost region. For KaVA observations, 7 radio bright AGNs have been selected from the extended Highest Flux Galaxy Cluster Sample (eHIFLUGCS; the X-ray flux limited & all sky galaxy cluster catalog) with various cooling timescales. In our previous KVN study, we have found that most AGNs in the cool-core clusters show the hint of pc-scale jet-like features while the ones in the non cool-core clusters do not. Using the KaVA 22/43 GHz data of a much higher resolution than the KVN resolution, we have investigated detailed pc-scale jet properties such as physical size, morphology, and radiative age. Based on the KaVA data, we discuss the effect of cluster cooling environment on the evolution of AGNs in the cluster center.

  • PDF

Ocean Response to the Pinatubo and 1259 Volcanic Eruptions

  • Kim, Seong-Joong;Kim, Baek-Min
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.305-323
    • /
    • 2012
  • The ocean's response to the Pinatubo and 1259 volcanic eruptions was investigated using an ocean general circulation model equipped with an energy balance model. Volcanic eruptions release gases into the atmosphere which increases the aerosol optical depth and acts to reduce the incoming short-wave radiation. For example, there was a huge volcanic eruption (Pinatubo) in 1991 which reduced the global mean radiative forcing by about 3 W $m^{-2}$. Two numerical experiments were simulated. The first experiment features the Pinatubo eruption and the second experiment simulates the much larger volcanic eruption that occurred in 1259 when the radiative forcing was reduced by 7 times compared to the Pinatubo event. With the reduced radiative forcing due to the Pinatubo eruption at about 3 W $m^{-2}$ and 1259 eruption at about 21 W $m^{-2}$, the global mean sea surface temperature (SST) decreased to its lowest in the second year after each event by about $0.4^{\circ}C$ and $1.6^{\circ}C$, respectively. Sea surface salinity (SSS) increased substantially in the northern North Pacific, northern North Atlantic, and the Southern Ocean. The reduced SST together with SSS increased ocean convection, which yielded an increase in North Atlantic Deep Water, Antarctic Bottom Water, and North Pacific Intermediate Water production and their outflows. The increase in overturning circulation eventually increased the pole-ward ocean heat fluxes. In conclusion, huge volcanic eruptions perturb the ocean substantially and their hallmarks last for more than a decade, confirming the importance of volcanic eruptions in illustrating the decadal-climate variability recorded in the paleoclimate proxy data for the past million years.

남극 세종기지의 에너지 평형 (Surface Energy Balance at Sejong Station, King George Island, Antarctica)

  • 김준;조희구;정연진;이윤곤;이방용
    • 대기
    • /
    • 제16권2호
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

복사장 내에서 충돌면의 표면조도가 단일액적 증발냉각에 미치는 영향 (Effects of Surface Roughness on Evaporation Cooling of Single Water Droplet in Radiative Fields)

  • 유갑종;박철우;장충선
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.467-474
    • /
    • 2004
  • This paper presents the results of an experimental investigation for the effect of radiant heat on the evaporation cooling of water droplet in the process of fire extinguishing. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter. The range of surface temperature is T$_{s}$ =80-14$0^{\circ}C$, surface roughness is R$_{a}$=0.08-0.64 ${\mu}{\textrm}{m}$ and the droplet diameter is $\Phi$=3.0 mm in the radiation. The results show that the evaporation time is shorter for the larger surface roughness and the volume of droplet increased when the surface roughness is 0.64 ${\mu}{\textrm}{m}$ at the surface temperature 127$^{\circ}C$. When the surface roughness is 0.64 ${\mu}{\textrm}{m}$, the heat flux is larger than the surface roughness is 0.08 ${\mu}{\textrm}{m}$ at the surface temperature 81$^{\circ}C$.>.>.

소듐냉각 고속로의 커버가스 영역에서 열유동 해석 (ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN THE COVER GAS REGION OF SODIUM-COOLED FAST REACTOR)

  • 이태호;김성오;한도희
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.21-27
    • /
    • 2008
  • The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.

발전소 Deaerator floor의 복사효과 저감을 위한 열유동 해석 (A thermal-flow analysis of deaerator floor of power plant for reducing the radiative heat transfer effect)

  • 김태권;하지수;최용석
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.476-481
    • /
    • 2016
  • 화력발전은 화석연료인 석탄을 연소시켜 얻은 열에너지로 물을 끓여 증기를 만들고 그 증기로 터빈을 운전시켜 터빈축에 연결된 발전기로 전기를 얻는 방식이다. 따라서 하절기에는 화력발전소 Deaerator의 표면온도는 $70^{\circ}C$, Storage Tank의 표면온도는 $67^{\circ}C$, 공기온도는 $50^{\circ}C$를 상회한다. 이런 현상은 기기와 작업자에게 부적합한 영향을 끼친다. 특히, Deaerator와 Storage Tank에 인접해 있는 작업자는 복사열전달의 영향을 받아 더 높은 체감온도를 느끼게 된다. 따라서 본 논문에서는 전산해석을 통해 Deaerator 부근의 열유동 특성을 파악하고 단열재를 사용하였을 때와 복사차폐막을 사용하였을 때의 효과를 비교하여 최적의 냉각조건을 제시하였다. Case 1은 현재 발전소의 형상이고 Case 2는 Case 1에서 단열재를 추가로 사용한 형상이고 Case 3은 Case 1에서 복사차폐막을 사용한 형상이다. 유동은 벽면과 열원의 온도 차이에 의해 발생되었고 오른쪽 상단부에 고온의 공기가 포집된다. 온도 분포에서 작업자표면의 최대 온도를 비교해보면 단열재를 사용한 Case 2가 복사효과 저감에 가장 효율적인 것으로 나타났다.

HEATING OF SUNSPOT CHROMOSPHERES BY SLOW-MODE ACOUSTIC SHOCK WAVES

  • Lee, Myung-Gyoon;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제18권1호
    • /
    • pp.15-31
    • /
    • 1985
  • Making use of the arbitrary shock theory developed by Ulmschneider (1967, 1971) and Ulmschneider and Kalkofen (1978), we have calculated the dissipation rates of upward-travelling slow-mode acoustic shock waves in umbral chromospheres for two umbral chromosphere models, a plateau model by Avrett (1981) and a gradient model by Yun and Beebe (1984). The computed shock dissipation rates are compared with the radiative cooling rate given by Avrett (1981). The results show that the slow-mode acoustic shock waves with a period of about 20 second can heat the low umbral chromospheres travelling with a mechanical energy flux of $2.6{\times}10^6\;erg/cm^2s$ at a height of $300{\sim}400km$ above the temperature minimum region.

  • PDF