• Title/Summary/Keyword: radiation wave

Search Result 746, Processing Time 0.027 seconds

Design of the Beam Tilted Series-fed Microstrip Array Antenna (빔경사 직렬 급전형 마이크로스트립 배열 안테나 설계)

  • 이진선;정민길;김진생;이정남;강치운;이우수;이문수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • A series-fed microstrip array antenna of beamwidth $10^{\circ}$, squint angle $80^{\circ}$ and SLL -15 dB below is designed. Series-fed arrays are formed by interconnecting all the elements by high-impedance transmission lines and feeding the power at the first element and it is a traveling-wave antenna which is terminated with a matched load. Radiation patterns and impedance matching of the antenna are analyzed by Ensemble 4.0, which is a popular software package for designing printed antennas and arrays. The squint angle of beam can be controlled by the spacing between the elements. The major advantages of series-fed array antennas are that feed arangement is compact and the losses associated with the feeding network are less than those of a corporate feed type. The antennas are fabricated on the RT/Duroid Laminates of 62 mil thickness. The experimental results are very close to the specifications to be designed.

  • PDF

Performance comparison of SVM and ANN models for solar energy prediction (태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Lee, Chang-Kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.626-628
    • /
    • 2018
  • In this paper, we compare the performances of SVM (Support Vector Machine) and ANN (Artificial Neural Network) machine learning models for predicting solar energy by using meteorological data. Two machine learning models were built by using fifteen kinds of weather data such as long and short wave radiation average, precipitation and temperature. Then the RBF (Radial Basis Function) parameters in the SVM model and the number of hidden layers/nodes and the regularization parameter in the ANN model were found by experimental studies. MAPE (Mean Absolute Percentage Error) and MAE (Mean Absolute Error) were considered as metrics for evaluating the performances of the SVM and ANN models. Sjoem Simulation results showed that the SVM model achieved the performances of MAPE=21.11 and MAE=2281417.65, and the ANN model did the performances of MAPE=19.54 and MAE=2155345.10776.

  • PDF

Maximum Coupling Through a Narrow Slit in a Short-Ended Parallel-plate Waveguide with a Nearby Conducting Strip (단락종단된 평행평판 도파관의 좁은 슬릿을 통한 근접 도체스트립과의 최대 결합)

  • Lee, Jong-Ik;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.15-21
    • /
    • 2000
  • In this study, the electromagnetic coupling through a narrow slit in the upper wall of a short-ended parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab Is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations whose unknowns are the slit electric field and the induced electric current over the strip are derived and solved numerically by use of the method of moments. From results, it has been observed that most of the incident power can be coupled exterior to the guide by appropriately setting the strip width and position, though the slit is very narrow. In addition, the differences between the radiation phenomena, observed in the cases that the conducting strip and the upper Plate of the PPW form a cavity and that strip behaves like a parasitic element, are discussed.

  • PDF

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics for Mobile Handset (단말기용 이중 대역저지 특성을 가지는 초광대역 안테나 설계 및 구현)

  • Cho, Young Min;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this paper, we present a compact planar dual band rejection Ultra Wide Band(UWB) antenna with folded parasitic element. The proposed antenna is consist of a hexagonal planar radiation patch antenna with a folded parasitic element which is located over the top and bottom surface. In contrast with other antenna which rejects single band using one method, folded parasitic element rejects dual band using one simple structure. Owing to folded parasitic element, dual-rejected properties are achieved in the Worldwide Interoperability for Microwave Access(WiMAX), C-band, and Wireless Local Area Network(WLAN) bands. The bandwidth of the proposed antenna was measured as 3.1~10.6 GHz for voltage standing wave ratio(VSWR) less than 2, except for the dual rejection bands of 3.4~4.2 GHz and 5.15~6.00 GHz.

Effective Design of the Broadband Horn Antenna Using Multi-mode Network Analysis (다중모드 회로망 분석을 이용한 광대역 혼 안테나의 효율적인 설계)

  • Moon, Jung-Ick;Cho, In-Gui;Kim, Sung-Min
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • This paper proposes the effective design procedure for a broadband, double-ridged horn antenna for evaluating the performance of the RF energy harvesting system with a multi-band rectenna. Using multi-mode network analysis, the higher-mode scattering parameters of the transition and horn were acquired and applied to the antenna design, respectively. As a result, the computing time could be reduced and the calculated VSWR(voltage standing wave ratio) of the antenna was very similar to the analyzed result using fully electromagnetic simulation. And there was also good agreement between the simulated and measured results. The designed broadband antenna has a bandwidth of 660~6360 MHz and 6~13.7 dBi peak radiation gain.

Infinite Element for the Analysis of Harbor Resonances (항만 부진동 해석을 위한 무한요소)

  • Park, Woo-Sun;Chun, In-Sik;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.139-149
    • /
    • 1994
  • In this paper, a finite element technique is applied to the prediction of the wave resonance phenomena in harbors. The mild-slope equation is used with a partial reflection boundary condition introduced to model the energy dissipating effects on the solid boundary. For an efficient modeling of the radiation condition at infinity, a new infinite element is developed. The shape function of the infinite element is derived from the asymptotic behavior of the first kind of the Hankel's function in the analytical boundary series solutions. For the computational efficiency, the system matrices of the element are constructed by performing the relevant integrations in the infinite direction analytically. Comparisons with the results from experiments and other solution methods show that the present model gives fairly good results. Numerical experiments are also carried out to determine the proper distance to the infinite elements from the mouth of the halter, which directly affect the accuracy and efficiency of the solution.

  • PDF

Extended Slip-Weakening Model and Inference of Rupture Velocity (Slip-Weakening 모델의 확장과 단층 파열속도의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.219-232
    • /
    • 2020
  • The slip-weakening model developed by Ohnaka and Yamashita is extended over the breakdown zone by equating the scaling relationships for the breakdown zone and the whole rupture area. For the extension, the study uses the relationship between rupture velocity and radiation efficiency, which was derived in the theory of linear elastic fracture mechanics, and the definition of fmax given in the specific barrier model proposed by Papageorgiou and Aki. The results clearly show that the extended scaling relationship is governed by the ratio of rupture velocity to S wave velocity, and the velocity ratio can be determined by the ratio of characteristic frequencies of a Fourier amplitude spectrum, which are corner frequency, fc, and source-controlled cut-off frequency, fmax, or vice versa. The derived relationship is tested by using the characteristic frequencies extracted from previous studies of more than 130 shallow crustal events (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan. Under the assumption of a dynamic similarity, the rupture velocity estimated from fmax/fc and the modified integral timescale give quite similar scale-dependence of the rupture area to that given by Kanamori and Anderson. Also, the results for large earthquakes show good agreement to the values from a kinematic inversion in previous studies. The test results also indicate the unavailability of the spectral self-similarity proposed by Aki because of the scale-dependent rupture velocity and the rupture velocity-dependent fmax/fc; however, the results do support the local similarity asserted by Ohnaka. It is also remarkable that the relationship between the rupture velocity and fmax/fc is quite similar to Kolmogorov's hypothesis on a similarity in the theory of isotropic turbulence.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF

Status of Observation Data at Ieodo Ocean Research Station for Sea Level Study

  • Han, MyeongHee
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.323-343
    • /
    • 2020
  • Observation data measured at Ieodo Ocean Research Station (IORS) have been utilized in oceanographic and atmospheric studies since 2003. Sea level data observed at the IORS have not been paid attention as compared with many other variables such as aerosol, radiation, turbulent flux, wind, wave, fog, temperature, and salinity. Total sea level rises at the IORS (5.6 mm yr-1) from both satellite and tide-gauge observations were higher than those in the northeast Asian marginal seas (5.4 mm yr-1) and the world (4.6 mm yr-1) from satellite observation from 2009 to 2018. The rates of thermosteric, halosteric, and steric sea level rises were 2.7-4.8, -0.7-2.6, 2.3-7.4 mm yr-1 from four different calculating methods using observations. The rising rate of the steric sea level was higher than that of the total sea level in the case with additional data quality control. Calculating the non-steric sea level was not found to yield meaningful results, despite the ability to calculate non-steric sea level by simply subtracting the steric sea level from total sea level. This uncertainty did not arise from the data analysis but from a lack of good data, even though tide, temperature, and salinity data were quality controlled two times by Korea Hydrographic and Oceanography Agency. The status of the IORS data suggests that the maintenance management of observation systems, equipment, and data quality control should be improved to facilitate data use from the IORS.