• Title/Summary/Keyword: radiation shielding

Search Result 606, Processing Time 0.035 seconds

Analysis of radiation safety management status of medical linear accelerator facilities in Korea

  • Kwon, Na Hye;Shin, Dong Oh;Ann, So Hyun;Kim, Jin Sung;Choi, Sang Hyoun;Kim, Dong Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.449-455
    • /
    • 2022
  • The rapid rise in the application of novel treatment techniques, such as intensity-modulated radiotherapy (IMRT), motivated us to survey the status of Korea's radiation safety management and the shielding designs of facilities employing medical linear accelerators (LINACs). To this end, a questionnaire was used to collect information on LINAC facilities and treatments, workload, shielding design, shielding management, and path of obtaining shielding information. Out of 100 domestic institutions, 52 responded to the survey. Approximately 70% of the institutions utilized IMRT for more than 60% of their cases, and an IMRT factor of 5 was adopted by 75% of these institutions. Over 80% of the institutions accounted for the applied time-averaged dose rate per week and instantaneous dose equivalent rates in their shielding designs. Approximately 45% of the institutions obtained important shielding information via a radiation shielding design company and the NCRP-151 report. Overall, most facilities were shown to follow the standards recommended by the relevant international agencies. However, the requirement to establish standardized shielding design information and clarify ambiguous paths for information acquisition was also highlighted. Therefore, the study's results can be used as a foundation for establishing a safety control system and for creating adequate shielding designs.

A New Radiation-Shielding Device for Restraining Veterinary Patients

  • Songyi Kim;Minju Lee;Miju Oh;Yooyoung Lee;Jiyoung Ban;Jiwoon Park;Sojin Kim;Uhjin Kim;Jaepung Han;Dongwoo Chang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • In veterinary medicine, most radiographic images are obtained by restraining patients, inevitably exposing the restrainer to secondary scattered radiation. Radiation exposure can result in stochastic reactions such as cancer and genetic effects, as well as deterministic reactions such as skin burns, cataracts, and bone marrow suppression. Radiation-shielding equipment, including aprons, thyroid shields, eyewear, and gloves, can reduce radiation exposure. However, the risk of radiation exposure to the upper arms, face, and back remains, and lead aprons and thyroid shields are heavy, restricting movement. We designed a new radiation-shielding system and compared its shielding ability with those of conventional radiation-shielding systems. We hypothesized that the new shielding system would have a wider radiation-shielding range and similar shielding ability. The radiation exposure dose differed significantly between the conventional and new shielding systems in the forehead, chin, and bilateral upper arm areas (p < 0.001). When both systems were used together, the radiation-shielding ability was better than when only one system was used at all anatomical locations (p < 0.01). This study suggests that the new radiation-shielding system is essential and convenient for veterinary radiation workers because it is a step closer to radiation safety in veterinary radiography.

A Study on Radiation Shielding Materials for Protective Garments using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 보호복용 방사선 차폐 소재 연구)

  • Bae, Manjae;Lee, Hyungmin
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Purpose: Lead has been widely used in radiation shielding for its low price and high workability. Recently in several europe countries, use of lead was banned for environmental issues. Also lead can cause health problems like alergies. Alternative materials for lead are highly required. The purpose of this study was to propose lead free radiation shielding material. Methods: Research of radiation shielding in Korea is not easy for certain limits such as radiation materials, experimental facilities and places. The collected data through the research were simulated using MCNPX. The simulation tools used for this study were utilized Monte Carlo method. Results: we suggest new design of lead free radiation shielding material using MCNPX code comparing shielding performance of new composite materials to lead. Conclusion: This newly introduced nano-scale composite of metal and polymer makes new chance for highly lightened radiation protective garments with endurable shielding performance.

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance (방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2021
  • While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions

  • Pires, Luiz F.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3470-3477
    • /
    • 2022
  • Soils are porous materials with high shielding capability to attenuate gamma and X-rays. The disposal of radionuclides throughout the soil profile can expose the living organisms to ionizing radiation. Thus, studies aiming to analyze the shielding properties of the soils are of particular interest for radiation shielding. Investigations on evaluating the shielding capabilities of highly weathered soils are still scarce, meaning that additional research is necessary to check their efficiency to attenuate radiation. In this study, the radiation shielding properties of contrasting soils were evaluated. The radiation interaction parameters assessed were attenuation coefficients, mean free path, and half- and tenth-value layers. At low photon energies, the photoelectric absorption contribution to the attenuation coefficient predominated, while at intermediate and high photon energies, the incoherent scattering and pair production were the dominant effects. Soils with the highest densities presented the best shielding properties, regardless of their chemical compositions. Increases in the attenuation coefficient and decreases in shielding parameters of the soils were associated with increases in clay, Fe2O3, Al2O3, and TiO2 amounts. In addition, this paper provides a comprehensive description of the shielding properties of weathered soils showing the importance of their granulometric fractions and oxides to the attenuation of the radiation.

A Study on Radiation Shielding Performance of Radiation Shielding Concrete Utilizing Electronic arc Furnace Oxidizing Slag (전기로 산화슬래그 골재를 활용한 방사능차폐콘크리트의 방사능 차폐 성능에 관한 연구)

  • Lim, Hee-Seob;Lee, Han-Seung;Choi, jae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.243-244
    • /
    • 2011
  • In general, magnetite or barite (density: more than 4.0ton/㎥) has been used in concrete for radiation shielding, and radiation tests have been performed to evaluate shielding performance. However, researchers have not studied concrete for radiation shielding that utilizes electric arc furnace oxidizing slag. This research aims to utilize electric arc furnace oxidizing slag which depends on reclamation as environment-friendly concrete materials by using coarse and fine aggregates of electric arc furnace slag containing 30% ferrous metal and with a density of around 3.0~3.8 ton/㎥. Accordingly, this research has judged that the high density electric arc furnace oxidizing slag aggregate can be applied to radiation shielding concrete. It has also examined the possibility of developing radiation shielding concrete utilizing electric arc furnace oxidizing slag aggregate by comparing concrete utilizing all fine and coarse aggregate of electric arc furnace oxidizing slag with concrete using magnetite.

  • PDF

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

Survey of Radiation Shielding Design Goals and Workload Based on Radiation Safety Report: Tomotherapy Vault

  • Cho, Kwang Hwan;Jung, Jae Hong;Min, Chul Kee;Bae, Sun Hyun;Moon, Seong Kwon;Kim, Eun Seog;Cho, Sam Ju;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The purpose of this study was to perform a survey of the radiation shielding design goals (P) and workload (W) based on the radiation safety reports concerned with structural shielding design for the IMRT treatment technique in Tomotherapy vaults. The values of the P and W factors as well as of a verified concrete thickness of the ceiling, bottom, sidewalls (sidewall-1 and sidewall-2), and door have been obtained from radiation safety reports for a total of 16 out of 20 vaults. The recommended and most widely used report for P values was the NCRP No. 151 report, which stated that the P factor in controlled and uncontrolled areas was 0.1 and 0.02 mSv/week, respectively. The range of the W factor was 600~14,720 Gy/week. The absorbed dose delivered per patient was 2~3 Gy. The maximum number of patients treated per day was 10~70. The quality assurance (QA) dose was 100~1,000 Gy/week. Fifteen values of the IMRT factor (F) were mostly used but a maximum of 20 values was also used. The concrete thickness for primary structures including the ceiling, bottom, sidewalls, and door was sufficient for radiation shielding. The P and W factors affect the calculation of the structural shielding design, and several parameters, such as the absorbed dose, patients, QA dose, days and F factor can be varied according to the type of shielding structure. To ensure the safety of the radiation shielding, it is necessary to use the NCRP No. 151 report for the standard recommendation values.

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Enhancing Gamma-Neutron Shielding Effectiveness of Polyvinylidene Fluoride for Potent Applications in Nuclear Industries: A Study on the Impact of Tungsten Carbide, Trioxide, and Disulfide Using EpiXS, Phy-X/PSD, and MCNP5 Code

  • Ayman Abu Ghazal;Rawand Alakash;Zainab Aljumaili;Ahmed El-Sayed;Hamza Abdel-Rahman
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.184-196
    • /
    • 2023
  • Background: Radiation protection is crucial in various fields due to the harmful effects of radiation. Shielding is used to reduce radiation exposure, but gamma radiation poses challenges due to its high energy and penetration capabilities. Materials and Methods: This work investigates the radiation shielding properties of polyvinylidene fluoride (PVDF) samples containing different weight fraction of tungsten carbide (WC), tungsten trioxide (WO3), and tungsten disulfide (WS2). Parameters such as the mass attenuation coefficient (MAC), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and macroscopic effective removal cross-section for fast neutrons (ΣR) were calculated using the Phy-X/PSD software. EpiXS simulations were conducted for MAC validation. Results and Discussion: Increasing the weight fraction of the additives resulted in higher MAC values, indicating improved radiation shielding. PVDF-xWC showed the highest percentage increase in MAC values. MFP results indicated that PVDF-0.20WC has the lowest values, suggesting superior shielding properties compared to PVDF-0.20WO3 and PVDF-0.20WS2. PVDF-0.20WC also exhibited the highest Zeff values, while PVDF-0.20WS2 showed a slightly higher increase in Zeff at energies of 0.662 and 1.333 MeV. PVDF-0.20WC has demonstrated the highest ΣR value, indicating effective shielding against fast neutrons, while PVDF-0.20WS2 had the lowest ΣR value. The Monte Carlo N-Particle Transport version 5 (MCNP5) simulations showed that PVDF-xWC attenuates gamma radiation more than pure PVDF, significantly decreasing the dose equivalent rate. Conclusion: Overall, this research provides insights into the radiation shielding properties of PVDF mixtures, with PVDF-xWC showing the most promising results.