• Title/Summary/Keyword: radiation mode

Search Result 481, Processing Time 0.03 seconds

Ground Radiation Antenna for Mobile Devices Using Controlled Endless Metal Rim Mode

  • Jeon, Jihwan;Qu, Longyue;Lee, Hongkoo;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.180-187
    • /
    • 2018
  • In this paper, we introduce a ground radiation antenna that uses controlled endless metal rim modes. In the proposed technique, the metal rim mode is tuned and excited as a one-wavelength radiator by a small ground radiation antenna. The proposed antenna occupies a clearance of $1mm{\times}4mm$ in a $30mm{\times}20mm$ ground plane. A metal rim with dimensions of $34mm{\times}24mm$ surrounds the ground plane, and the metal rim is separated from the ground plane by a gap of 2 mm. In addition, a lumped capacitor is inserted between the metal rim and the ground plane to control the characteristic mode of the metal rim such that the resonance of the metal rim is tuned to be equal to the operating frequency. By performing simulations and measurements, we compare the performance of the proposed antenna with that of a reference antenna that does not have an inserted capacitor between the metal rim and the ground plane. The results show that a significant improvement of the radiation performance is obtained by employing the proposed technique.

A Study on the Radiation Characteristics of the Conical Corrugated Feed Horn using the Gaussian Beam Mode (가우시안 빔 모드에 의한 원뿔형 컬러게이트 급전 혼의 복사특성에 관한 연구)

  • 장대석;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 1994
  • The radiation characteristics of the conical corrugated feed horn are analyzed by the Gaussian beam mode theory. the electric field over the aperture can be expanded in terms of a set of Gaussian-Laguerre modes. It is proved that these modes are the solutions of the wave epuations for the paraxial approximation. A method, using the sum of the mode expansion coefficients instead of calculation only the fundamental mode, is presented in order to reduce the radiation pattern error. For illustrative examples, the radiation patterns of the corrugated horn antenna operting over C, Ku, and mm-wave band are calculated. Our results agree well with the results obtained by the vector potential method over each band, and also agree well with the measured value at 6.175GHz.

  • PDF

Far Infrared Emissivity of Wood Material - Comparing the Three Heat Transfer Modes of Wood Box and Aluminum Box

  • Lee, Hwa-Hyoung;Bender, Donald A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2009
  • In case of wood flooring, the high emissivity would be one of the most important properties especially as the cover material of underfloor heating system. The FIR (Far Infrared) materials such as wood emit FIR energy by heating, which has been used as the medical therapy such as dry sauna. This research investigated the emissivity and the emission power of wood composites by comparing the amount of the three heat transfer modes transferred by infrared radiation which came from the increased temperature of the bottom board of the plywood box by the heater. The results showed the value of radiation mode was the highest mode for the plywood box, and the convection mode was the main mode for the aluminum box. The rate of convection was 81.8% in the aluminum box and 48.2% in the plywood box, respectively. In case of the rate of radiation, the aluminum box showed only 15.4% and the plywood box showed 51%. The emissivity and the emission power of birch plywood showed the same values as those of wood. The amount of energy required for the temperature rising of water within vial in the aluminum box and in the plywood box were 3.32 kJ and 6.70 kJ respectively, which showed that the vial temperature of the plywood box was two times higher than that of the aluminum box.

The radiation safety education and the pain physicians' efforts to reduce radiation exposure

  • Kim, Tae Hee;Hong, Seung Wan;Woo, Nam Sik;Kim, Hae Kyoung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.30 no.2
    • /
    • pp.104-115
    • /
    • 2017
  • Background: C-arm fluoroscopy equipment is important for interventional pain management and can cause radiation injury to physicians and patients. We compared radiation safety education and efforts to reduce the radiation exposure of pain specialists. Methods: A survey of 49 pain specialists was conducted anonymously in 2016. The questionnaire had 16 questions. That questionnaire was about radiation safety knowledge and efforts to reduce exposure. We investigated the correlation between radiation safety education and efforts of radiation protection. We compared the results from 2016 and a published survey from 2011. Results: According to the 2016 survey, all respondents used C-arm fluoroscopy in pain interventions. Nineteen respondents (39%) had received radiation safety education. Physicians had insufficient knowledge about radiation safety. When the radiation safety education group and the non-education group are compared, there was no significant difference in efforts to reduce radiation exposure and radiation safety knowledge. When the 2011 and 2016 surveys were compared, the use of low dose mode (P = 0.000) and pulsed mode had increased significantly (P = 0.001). The number checking for damage to radiation protective garments (P = 0.000) and use of the dosimeter had also increased significantly (P = 0.009). But there was no significant difference in other efforts to reduce radiation exposure. Conclusions: Pain physicians seem to lack knowledge of radiation safety and the number of physicians receiving radiation safety education is low. According to this study, education does not lead to practice. Therefore, pain physicians should receive regular radiation safety education and the education should be mandatory.

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

Optical Parametric Amplification in Cerenkov-pump Configuration in a Planar Waveguide (평판 도파로에서의 체렌코프 펌프 형태에 의한 광 매개증폭)

  • Suh, Zung-Shik
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • We have analyzed the amplification of a signal wave in the optical parametric interactions of the pump, signal, and idler waves in planar waveguides, with the pump wave being Cerenkov radiation. Based on the coupled-mode theory, we have derived the first-order coupled-mode differential equations for no pump depletion. The equations can easily be solved numerically. The approximate analytical and numerical solutions of the equations show that the signal wave can be amplified parametrically.

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

Shielding Effect of Radiation Protector for Interventional Procedure (중재적 방사선 분야 방호용구 차폐효과)

  • Ko, Shin-Kwan;Kang, Byung-Sam;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.213-219
    • /
    • 2007
  • The purpose of this study is to evaluate shielding effect of radiation protector for interventional radiologists in procedures by measuring inside and outside of radiation protector. In this study, we measured the radiation dose of 4 interventional radiologists during TACE and PTBD procedure for 4 month(2005.05-2005.09). Absorbed dose were measured by TLD placed underneath and over radiation protector such as Goggle, Thyroid protector, Apron and placed on the 4th finger of Hand. In addition, we measured background radiation dose in the control room using TLD. During TACE procedure, using 0.07 mmPb Goggle decreased average 53.8% of radiation dose rate in continuous fluoroscopic mode and decreased average 77.6% of radiation dose rate in pulse fluoroscopic mode. Using 0.5 mmPb Thyroid protector decreased average 88.9% of radiation dose rate in continuous fluoroscopic mode and decreased average 92.8% in pulse fluoroscopic mode. During PTBD procedure, using 0.07 mmPb Goggle decreased radiation dose rate average 62.7%, 87.9% by 0.5 mmPb Thyroid protector, 90.5% by 0.5 mmPb Apron. The average fluoroscopic time of PTBD was 6.14 min. shorter than TACE procedure, but radiation exposure dose rate of PTBD was 3 times higher in total body dose, and 40 times higher in hand dose rate than TACE. Interventional radiologists must wear thicker protector recommended over 0.5 mmPb. Also, they must use lead Goggle during interventional procedure. Abdomen dose decreased average 38.4% by drawing a lead curtain under the patient's table, therefore, they must draw a lead curtain to shield scattering ray. Radiation exposure dose decreased average 59.0% by using pulse fluoroscopic mode. So radiologists would better use pulse fluoroscopic mode than continuous fluoroscopic mode to decrease exposure dose.

  • PDF

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

The Acoustic Output Estimation for Therapeutic Ultrasound Equipment using Electro-Acoustic Radiation Conductance (전기-음향 방사컨덕턴스를 이용한 치료용 초음파 자극기의 음향출력 예측)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • To increase therapeutic efficiency and biological safety, it is important to precision control of acoustic output for therapeutic ultrasound equipment. In this paper, the electro-acoustic radiation conductance, one of electroacoustic characteristics of therapeutic ultrasound equipment, was measured by the radiation force balance method according to IEC 61161 standards and the acoustic output was estimated using the electro-acoustic radiation conductance. The estimation of acoustic output was conducted to continuous wave mode and pulse wave mode of duty cycle between 20% and 80%. The differences between prediction values and measurement results are within 5% of measurement uncertainty, which is a reasonably good agreement. The results show that acoustic output controlled by electro-acoustic radiation conductance was found to be an effective method.