• Title/Summary/Keyword: radiation industries

Search Result 119, Processing Time 0.028 seconds

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

Development of a Portable Detection System for Simultaneous Measurements of Neutrons and Gamma Rays (중성자선과 감마선 동시측정이 가능한 휴대용 계측시스템 개발에 관한 연구)

  • Kim, Hui-Gyeong;Hong, Yong-Ho;Jung, Young-Seok;Kim, Jae-Hyun;Park, Sooyeun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.481-487
    • /
    • 2020
  • Radiation measurement technology has steadily improved and its usage is expanding in various industries such as nuclear medicine, security search, satellite, nondestructive testing, environmental industries and the domain of nuclear power plants (NPPs). Especially, the simultaneous measurements of gamma rays and neutrons can be even more critical for nuclear safety management of spent nuclear fuel and monitoring of the nuclear material. A semiconductor detector comprising cadmium, zinc, and tellurium (CZT) enables to detect gamma-rays due to the significant atomic weight of the elements via immediate neutron and gamma-ray detection. Semiconductor sensors might be used for nuclear safety management by monitoring nuclear materials and spent nuclear fuel with high spatial resolution as well as providing real-time measurements. We aim to introduce a portable nuclide-analysis device that enables the simultaneous measurements of neutrons and gamma rays using a CZT sensor. The detector has a high density and wide energy band gap, and thus exhibits highly sensitive physical characteristics and characteristics are required for performing neutron and gamma-ray detection. Portable nuclide-analysis device is used on NPP-decommissioning sites or the purpose of nuclear nonproliferation, it will rapidly detect the nuclear material and provide radioactive-material information. Eventually, portable nuclide-analysis device can reduce measurement time and economic costs by providing a basis for rational decision making.

A STUDY OF THERMAL ANALYSIS OF KAONICS (적외선 카메라 KAONICS의 열해석)

  • Kang, Ji-Na;Lee, Sung-Ho;Jin, Ho;Park, Soo-Jong;Moon, Bong-Kon;Kim, Sang-Ho;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.467-480
    • /
    • 2004
  • It is very important to eliminate thermal background radiation for the near infrared camera system such as KAONICS (KAO Near Infrared Camera System). Thermal background radiations which come from window and cryostat wall influence IR detector and decrease IR system performance. Therefore the cold box which contains optics and detector housing must be cooled down to eliminate thermal background radiation. We carried out quantitative analysis to determine internal cooling temperature to reduce thermal noise in the J, H, Ks, and L bandpass. Additionally, we estimated the incoming heat load and then chose the cryocooler adequate to KAONICS's requirements. The cooling time and the final cooling temperature of the cold box were calculated. These results were also implemented to the system design.

Performance of a 5 L Liquid Hydrogen Storage Vessel (5 L급 액체수소 저장용기의 성능특성 연구)

  • KARNG, SARNG WOO;GARCEAU, NATHANIEL;LIM, CHANG MU;BAIK, JONG HOON;KIM, SEO YOUNG;OH, IN-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.

Present Status and Future of Spent Fuel Management(1) - National Strategies and Their Implementations (사용후핵연료관리의 현황 및 미래(1) -국가별 관리전략과 그 이행-)

  • Park, Won-Jae;Suk, Tae-Won
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 1996
  • The continuous expansions and development of nuclear power have led to generation of the significant volume of spent fuels and radioactive wastes. And so, safe and effective management of the spent fuel has been becoming internationally sensitive and significant issue since the early 1990s. Especially, more importance would be added in the view point of international politics, because of recent political changes in the countries of Eastern Europe including dissociation of the former Soviet Union and the difficulties faced by the nuclear industries worldwide. Accordingly, this paper is proposed to show an overview of national strategies and Policies on the spent fuel management, that are being assessed and carried out worldwide at this time. The overview is based on recent developments of the national strategies, their implementations and some related experiences presented in IAEA International meetings and some technical papers.

  • PDF

Analysis of the Risk Perception of Nuclear Power Plant and Radiation (원자력발전 및 방사선의 사회적 위험에 대한 인식분석)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3570-3577
    • /
    • 2012
  • Researches on the danger of nuclear power generation, the foundation of the development of national industry and one of the energy sources, as perceived by ordinary citizens, are very important to social acceptance of nuclear power generation. Accordingly, this study intends to understand how ordinary citizens perceive the social risk of nuclear power generation and radiation, and their misconceptions, and to propose ways to improve such perceptions. To achieve these goals, this study analyzed the perceptions of 251 ordinary citizens. The analysis showed that ordinary citizens have vague anxiety and suspicion about the safety of nuclear power generation, and little trust in government-affiliated organizations. The younger they were, the more influential they thought corporations and industries were. The result of this study suggests that the misconceptions of ordinary citizens should be corrected by professors and scientists in university research institutions they trust the most, and their intrinsic perceptions should be changed accordingly.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.

Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner (덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bong Jae;Kim, Jinil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A method was developed for analyzing the radiation heat transfer from the duct burner flame to the heat exchanger in a heat recovery steam generator (HRSG) in order to supplement the existing thermal design process. The burner flame and the heat exchanger were considered to be imaginary planes, and the flame temperature, surface, and emissivity were simplified using an engineering approach. Three analysis cases in which the duct burner position and fuel were changed were considered. The calculated flame radiative heat transfer and local flux on the heating surface were compared with those of 3-atomic gas radiation and convection. In all analysis cases, heat transfer by 3-atomic gas radiation was very small. The ratio of the flame radiative heat transfer to the convection heat transfer on the heating surface was estimated to be as high as 8-41%. Moreover, the local heat flux on the heating surface centerline was dominated by flame radiative heat flux.

Determination of Processing Parameters Affecting the Conversion and Thermal Stability of Photocurable Acrylate-based Binder (아크릴계 광바인더의 전환율과 열안정성 향상을 위한 공정변수 결정)

  • Kim, Byungchul;Seo, Dong Hak;Chae, Heon-Seung;Shin, Seunghan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Photocurable binder for a transparent glass fiber composite was prepared with alicyclic methacrylate and fluorene-based diacrylate. ANOVA (analysis of variance) analysis was used to know main factors affecting the conversion of photocurable binder. It showed radiation intensity and photoinitiator (PI) concentration were main factors. The conversion of photocurable binder was simply increased with radiation intensity. Its increment however was abated with increasing PI concentration. We found that average conversion of the binder measured by FTIR-ATR was 87% when it was exposed to $5J/cm^2$ of UV dose with 5 wt% of PI. Oxime ester type PI was very effective to get a high degree of conversion, but it caused a yellowing problem. Owing to post-baking process, UV cured film showed an improved thermal stability by increase of conversion and removal of volatile organic compounds. TG% at $260^{\circ}C$ of film cured with 5 wt% of PI (TPO+MBF) and $5J/cm^2$ of UV radiation increased from 95.4 to 99.0% by post-baking at $230^{\circ}C$ for 5 min.

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.