• Title/Summary/Keyword: radiation heating

Search Result 439, Processing Time 0.029 seconds

Characteristics of the Seasonal Variation of the Radiation in a Mixed Forest at Kwangneung Arboretum (광릉수목원 혼합림에서 복사 에너지의 계절 변화 특성)

  • 김연희;조경숙;김현탁;엄향희;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.285-296
    • /
    • 2003
  • The measurement of the radiation energy, trunk temperature, leaf area index (LAI), air temperature, vapor pres-sure, and precipitation has been conducted under a mixed forest at Kwangneung Arboretum during the period of 2001. Characteristics of the diurnal and seasonal variation of the radiative energy were investigated. The aerodynamic roughness length was determined as about 1.6 m and the mean albedo was about 0.1 The downward short-wave radiation was linearly correlated with the net radiation and its correlation coefficient was about 0.96. From this linear relation, the heating coefficient was calculated and its annual mean value was about 0.21 The albedo and heating coefficient was varied with season, surface characteristics, and meteorological conditions. The diurnal and seasonal variations of radiation energy were discussed in terms of the surface characteristics and meteorological conditions. In the daytime, during clear skies, net radiation was dominated by the shortwave radiation. In presence of clouds and fog, the radiation energy was diminished. At night, the net radiation was entirely dominated due to the net longwave radiation. There was no distinct diurnal variation in net radiation flux during the overcast or rainy days. The net radiation was strongest in spring and weakest in winter. The seasonal development in leaf area was also reflected in a strong seasonal pattern of the radiation energy balance. The timing, duration, and maximum leaf area and trunk temperature were found to be an important control on radiation energy budget. The trunk temperature was either equal or warmer than air temperature during most of the growing season because the canopy could absorb a substantial amount of sunlight. After autumn (after the middle of October), the trunk temperature was consistently cooler than air temperature.

Experimental Study of Emissivity with the Variation of Temperature and Shape Factor Using the Radiation Apparatus (복사 장치를 이용한 온도와 형상계수의 변화에 따른 방사율에 관한 실험적 연구)

  • Kim, Chung-Rae;Jeong, Byung-Cheol;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.135-140
    • /
    • 2005
  • Voltage of radiometer is measured experimentally using the radiation apparatus in each case of iron- and copper-plates as specimen heating device. The length between radiometer and conical shield and the temperature of specimen heating device are considered as variables. The length between radiometer and conical shield controls the amount of radiation from the specimen heating device. Emissivity for both iron-and copper-plates are calculated by using Stefan-Boltzmann equation. One of results shows that emissivity for both materials increases as the length between radiometer and conical shield increases.

  • PDF

Hot Gas Analysis of Circuit Breakers By Combining Partial Characteristic Method with Net Emission Coefficient

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.115-121
    • /
    • 2003
  • This paper proposes a radiation model, which considers radiation transport as an important component in hot gas analysis. This radiation model is derived from combining the method of partial characteristics (MPC) with net emission coefficient (NEC), and it covers the drawbacks of existing models. Subsequently, using this proposed model, the arc-flow interaction in an arcing chamber can be efficiently computed. The arc is represented as an energy source term composed of ohmic heating and the radiation transport in the energy conservation equation. Ohmic heating term was computed by the electric field analysis within the conducting plasma region. Radiation transport was calculated by the proposed radiation model. Also, in this paper, radiation models were introduced and applied to the gas circuit breaker (GCB) model. Through simulation results, the efficiency of the proposed model was confirmed.

An Analysis on Building Shading Plan for a City Hall considering Energy Saving

  • Kim, Jin Lee;No, Sang Tae
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: Recently, many public office buildings which were built by curtain wall increased rapidly, but the results of the investigation of the government, these buildings have been found that the heating and cooling thermal load is high, and showed low energy efficiency. Method: To evaluate the effects by applying outdoor louver and indoor blind, which can control solar radiation in order to reduce the heating and cooling load of public office building which was built by glass curtain wall. The heating and cooling load was calculated via Energyplus, building and outdoor louver, indoor blind were modeled by Google sketchup connected to Energyplus. Result: The results of this study were as follows; the case of applying various outdoor louver, the heating and cooling load all decreased as compared to the case without applying outdoor louver, the case of applying indoor blind, the heating and cooling load decreased as compared to the case without applying indoor blind, but indoor blind showed low energy performance comparing outdoor louver.

Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels (PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과)

  • Park, Kyoung Ran;Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Polyvinyl alcohol (PVA) hydrogels were prepared by the irradiation and heating. Irradiation and heating processes were carried out to improve the heat resistance of PVA hydrogels at high temperature. The physical properties such as gel content, degree of swelling and gel strength for the synthesized hydrogels were examined. The structure variations were investigated using the following techniques: differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Gel content and gel strength of the hydrogels were higher when the two steps of irradiation followed by heat treatment were used rather than only with the irradiation. The hydrogels prepared by the irradiation and the two steps had good heat resistance at high temperature.

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

Unusual Angular Arrangement of Electrodes in Capacitive Heating Device -Thermal Distribution and Clinical Application- (유전 가열장치에서 전극의 각도 배열 -온도 분포의 특성 및 임상 적용-)

  • Seong, Jin-Sil;Chu, Sung-Sil;Kim, Gwi-Eon;John, Juhn-Kyu;Yang, Sung-Wha
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.313-320
    • /
    • 1989
  • In capacitive heating device, which considered efficient for deep heating, parallel arrangement of the electrodes is a serious limiting factor in heating for eccentrically located lesions because it causes overheating of the exposed ipsilateral skin surface, the heating pattern is also frequently inappropriate, and the arrangement tends to be unstable due to the patient's gravity. Therefore we attempted an angular arrangement of the electordes to achieve more homogenous and efficient heating for such lesions. In phantom study, both the thermal profile and thermogram established the heating pattern in this unusual angular arrangement of the electrodes at $60^{\circ},\;90^{\circ}\; and\;120^{\circ}$ angles, respectively. An angular arrangement was also clinically applied to 3 patients. The patients' tolerance was good without significant complication and the thermal distribution was satisfactory. In conclusion, this unusual arrangement of electrodes appears to be promising in the clinical application to the eccentrically located lesions.

  • PDF

A study of 99mTc-sestamibi labeling condition using radio-chromatography

  • Moon, Sung-Hyun;Lee, Yun-Sang;Lee, Dong Soo;Chung, June-Key;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.38-43
    • /
    • 2017
  • Tc-99m labeled sestamibi ($^{99m}Tc$-MIBI) is one of most widely used radiopharmaceuticals for myocardial SPECT imaging. Radiolabeling of $^{99m}Tc$-MIBI is recommended by heating in $100^{\circ}C$ water bath for 15 min. However, the water bath might be a source of contamination. Thus, if radiolabeling of $^{99m}Tc$-sestamibi can be performed at room temperature, then it would be more convenient to use in clinical application. In this study, we performed the radiolabeling of $^{99m}Tc$-MIBI in different temperature conditions or using different instruments to find out the efficient labeling condition. We studied the $^{99m}Tc$-MIBI labeling at room temperature or $100^{\circ}C$ heating block, and checked the labelling yields every 1 min for 10 min using radio-TLC with 2 different eluents-saline and acetone. From the experiment, we confirmed that the $^{99m}Tc$-MIBI can be labeled over 90% yield but not completed at room temperature. However, the $^{99m}Tc$-MIBI labeling was completed when it was performed in the $100^{\circ}C$ heating block. Finally, we proved that heating is essential for complete $^{99m}Tc$-MIBI labelling, furthermore using heating block is also possible instead of water bath.

Analysis of Temperature Distribution of the Glass Panel in the Infrared Heating Chamber (적외선 가열로에서 가열되는 유리 패널의 온도분포 해석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Ha, Su-Seok;Kang, Sae-Byul;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.278-283
    • /
    • 2003
  • Analysis has been carried out to investigate the temperature variation and the uniformity of the temperature distribution of the glass panel by infrared radiant heating. Halogen lamps are used to heat the panel and located near the top and bottom of the rectangular chamber. The thermal energy is transfered only by radiation and the radiation exchange occurs only on the solid surfaces and is considered by using the view factor. The results show that the uniformity of the temperature distribution of the panel is improved but the time for heating increases as the wall reflectivity is large. The temperature difference reaches a maximum in the early stage of the heating process and then decreases until it reaches the uniform steady-state value.

  • PDF

Thermal Inactivation of Salmonella enteritidis, Salmonella typhimurium and E. coli O111 in Liquid Cultures During Microwave Radiation (Microwave 조사에 의한 Salmonella enteritidis, Salmonella typhimurium 과 E. coli의 불활성에 관한 연구)

  • 이조윤;이강욱;배형철;김종우
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.269-275
    • /
    • 1998
  • The purpose of this study was to determine the thermal inactivation of Salmonella enteritidis, Salmonella typhimurium and E. coli O111 in liquid cultures treated with microwave energy. Furthermore, this study was to introduce new methodologies for studying nonthermal microwave effects on microorganisms, using controlled microwave energy and specially designed apparatuses. For the automatic temperature control during microwave heating, the real time data acquisition and computation system is designed with BASIC routine. The automatic temperature control system used in the experiments perform relatively stable control at the experiment temperature of 45, 50, 55 60$^{\circ}C$ and 65$^{\circ}C$ for 30 minutes. The effects of microwave heating on liquid cultures was compared with that of conventional heating, still reduces effectively the number of pathogenic bacteria in liquid cultures. While no particular differences between microwave heating and conventional heating was observed in the activation of E. coli at 45$^{\circ}C$ test, the activation of Sal. enteritidis and Sal. typhimurium was slightly reduced during the microwave treatments.

  • PDF