• Title/Summary/Keyword: radiation force

Search Result 275, Processing Time 0.04 seconds

Haptic recognition of the palm using ultrasound radiation force and its application (초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용)

  • Kim, Sun Ae;Kim, Tae Yang;Lee, Yeol Eum;Lee, Soo Yeon;Jeong, Mok Kun;Kwon, Sung Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.467-475
    • /
    • 2019
  • A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Acoustic radiation from resiliently mounted machinery in fluid loaded infinite cylindrical shell with periodic ring supports (보강 원통형 쉘에 탄성 지지된 기계류에 의한 수중 음향 방사)

  • Bae, Soo Ryong;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.644-649
    • /
    • 2014
  • Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring supports. Transmitted force from machine to a shell can be different by the impedance of shell. In this paper the transmitted force from machinery to a infinite shell through vibration isolator is considered by the impedance of shell. The effect of the shell impedance for acoustic radiation is investigated.

  • PDF

Estimation of Vibration Source and Sound Radiation of a Refrigerator Fan by using Measured Acceleration Signals (가속도 측정신호를 이용한 냉장고 홴의 진동원과 방사소음의 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.834-841
    • /
    • 2011
  • Obtaining the real exciting force is important for the analysis of structural vibration or sound radiation to represent the actual condition. But in most cases, it is so difficult to get the actual force signals by direct measurement using sensors due to complex geometry. This paper suggests advanced source identification method which can be applied to the prediction of radiated noise considering correlations between measured signals. This method was implemented to the identification of the fan force in the refrigerator. The analysis of structural vibration and radiated noise caused by the fan force was also performed. The comparison between predicted SPL and measured SPL of the radiated noise by the refrigerator fan showed good agreement.

Analysis of Optical Trapping Efficiency on Optically Trapped Microparticles (광포획된 마이크로입자의 포획효율의 분석)

  • 김현익;임강빈;주인제;오차환;송석호;김필수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.108-109
    • /
    • 2002
  • Optical tweezers는 광압(radiation pressure)을 사용하여 입자들을 포획하거나 조절할 수 있다는 점에서 마이크로스케일의 유전체구뿐만 아니라 세포에서도 널리 사용되고 있다. 일반적으로 빛이라는 것은 광자들의 집합체로서 광자의 입자성으로 인하여 외부의 물체와 충돌시 운동량을 전달하게 되고 이것을 광압(radiation pressure)이라고 하며 optical tweezers [1]는 이 광압을 이용한 방법중 하나이다. 레이저빔을 입자에 집속 시켜 주게 되면 입자는 광압에 의해서 gradient force와 scattering force의 힘을 받게 된다. (중략)

  • PDF

Atomic motion and spatial distribution of 87Rb by Coordinate-dependent asymmetry radiation force in MOT (MOT에서 좌표의존 비대칭 광압에 의한 루비듐 원자의 운동과 원자 구름 분포)

  • 박성종
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.221-226
    • /
    • 2000
  • We observed the spatial distributions of atom in a magneto-optical trap. These distributions include sphere, stick, ring, ring with core, sphere-sphere, sphere-ring etc. Coordinate-dependent asymmetry radiation force (CDARF) that arises due to laser beams misalignment and transverse profile of the laser beams is exerted on atoms, and the shape of trapped cloud is changed with the misalignment parameter. We use equations of motion that takes into account the Zeeman sublevels of the 87Rb atom, magnitude and direction of magnetic field, polarization of trapping lasers, and transverse profile of the laser beams. A theoretical analysis of the equation of motion for the trapped atom explained all the experimental observations.

  • PDF

Size-based separation of microscale droplets by surface acoustic wave-induced acoustic radiation force (표면파 유도 음향방사력을 이용한 미세액적의 크기 선별)

  • Mushtaq, Ali;Beomseok, Cha;Muhammad, Soban Khan;Hyunwoo, Jeon;Song Ha, Lee;Woohyuk, Kim;Jeongu, Ko;Jinsoo, Park
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.19-26
    • /
    • 2022
  • In droplet microfluidics, precise droplet manipulation is required in numerous applications. This study presents ultrasonic surface acoustic wave (USAW)-based microfluidic device for label-free droplet separation based on size. The proposed device is composed of a slanted-finger interdigital transducer on a piezoelectric substrate and a polydimethylsiloxane microchannel placed on the substrate. The microchannel is aligned in the cross-type configuration where the USAWs propagate in a perpendicular direction to the flow in the microchannel. When droplets are exposed to an acoustic field, they experience the USAW-induced acoustic radiation force (ARF), whose magnitude varies depending on the droplet size. We modeled the USAW-induced ARF based on ray acoustics and conducted a series of experiments to separate different-sized droplets. We found that the experimental results were in good agreement with the theoretical estimation. We believe that the proposed method will serve as a promising tool for size-based droplet separation in a label-free manner.

Size-based Separation of Yeast Cell by Surface Acoustic Wave-induced Acoustic Radiation Force (음향방사력을 이용한 효모세포의 크기별 분리)

  • Raihan Hadi Julio;Muhammad Soban Khan;Mushtaq Ali;Ghulam Destgeer;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2023
  • The yeast Saccharomyces cerevisiae (S. cerevisiae) is considered an ideal eukaryotic model and has long been recognized for its pivotal role in numerous industrial production processes. Depending on the cell cycle phases, microenvironment, and species, S. cerevisiae varies in shape and has different sizes of each shape such as singlets, doublets, and clusters. Obtaining high-purity populations of uniformly shaped S. cerevisiae cells is crucial in fundamental biological research and industrial operations. In this study, we propose an acoustofluidic method for separating S. cerevisiae cells based on their size using surface acoustic wave (SAW)-induced acoustic radiation force (ARF). The SAW-induced ARF increased with cell diameter, which enabled a successful size-based separation of S. cerevisiae cells using an acoustofluidics device. We anticipate that the proposed acoustofluidics approach for yeast cell separation will provide new opportunities in industrial applications.

Hydrodynamic Forces Acting on the Submerged-Plate

  • Lee Sang Min;Kong Gil Young;Kim Chol-Seong;Lee Yun Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.149-153
    • /
    • 2003
  • The hydrodynamic forces acting on the submerged plate are composed of diffraction and radiation forces. Thus we have carried out the extensive experiments and numerical simulations to make clear the characteristics of the diffraction and radiation forces on the submerged plate. These experimental results are compared with the numerical ones, and we discuss the effect of nonlinear on the hydrodynamic forces acting on the submerged plate. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces on the structure behind the submerged plate.

  • PDF

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF