• 제목/요약/키워드: radiation dose distribution

검색결과 722건 처리시간 0.03초

인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가 (Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology)

  • 조용인
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권3호
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가 (Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation)

  • 이동연;강영록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권2호
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

A Review of Dose Rate Meters as First Responders to Ionising Radiation

  • Akber, Aqeel Ahmad;Wiggins, Matthew Benfield
    • Journal of Radiation Protection and Research
    • /
    • 제44권3호
    • /
    • pp.97-102
    • /
    • 2019
  • Background: Dose rate meters are the most widely used, and perhaps one of the most important tools for the measurement of ionising radiation. They are often the first, or only, device available to a user for an instant check of radiation dose at a certain location. Throughout the world, radiation safety practices rely strongly on the output of these dose rate meters. But how well do we know the quality of their output? Materials and Methods: This review is based on the measurements 1,158 commercially available dose rate meters of 116 different makes and models. Expected versus the displayed dose patterns and consistency was checked at various dose rates between $5{\mu}Gy{\cdot}h^{-1}$ and $2mGy{\cdot}h^{-1}$. Samples of these meters were then selected for further investigation and were exposed to radiation sources covering photon energies from 50 keV to 1.5 MeV. The effect of detector orientation on its reading was also investigated. Rather than focusing on the angular response distribution that is often reported by the manufacturer of the device, this study focussed on the design ergonomics i.e. the angles that the operator will realistically use to measure a dose rate. Results and Discussion: This review shows the scope and boundaries of the ionising radiation dose rate estimations that are made using commonly available meters. Observations showed both inter and intra make and model variations, occasional cases of instrument failure, instrument walk away, and erroneous response. Conclusion: The results indicate the significance of selecting and maintaining suitable monitors for specific applications in radiation safety.

자체 제작한 Foxtail Millet Vacuum Cushion의 광자선 피부암 치료 시 유용성 검증 (Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment)

  • 최신철;이경재;정성민;오태성;박종일;신현교
    • 대한방사선치료학회지
    • /
    • 제24권2호
    • /
    • pp.189-196
    • /
    • 2012
  • 목 적: 광자선을 이용한 피부암 치료 시 피부 선량의 충족과 환자 셋업의 재현성 유지는 치료의 성과에 있어서 무엇보다 중요한 요소이다. 이에 본 연구는 기존에 시행해 오던 방식이었던 상품화된 고정기구 및 조직 등가물질의 조합에 의한 치료 방식이나 물 수조를 이용한 치료 시 발생하던 단점들을 보완하기 위해 Foxtail Millet Vacuum Cushion (FMVC)의 자체 제작을 실시하고 그 유용성을 검증하여 광자선 피부암 치료의 질을 높이고자 한다. 대상 및 방법: 자체 제작한 FMVC의 광자선 투과도에 따른 절대 선량 및 선량 분포를 분석하기 위해 조직과 밀도가 유사한 고체 팬톰과 볼루스에 대해 비교 측정하였다. 조사야 $10{\times}10$ cm에서 각 대상 물질의 1 cm, 2 cm, 3 cm 두께별로 6 MV 광자선 100 MU를 각각 3회씩 조사하였고, 중심점에 대한 절대 선량 측정을 실시하였으며, Mapcheck을 사용해 조사야 내의 선량 분포를 비교하였다. 선량 분포 비교의 오차범위는 ${\pm}3%$로 정하고 합격, 불합격 여부를 결정하여 FMVC와 비교 분석하였고, FMVC를 사용하여 CT 모의치료를 실시하여 종양용적(Gross Tumor Volume, GTV)에 대한 계획 선량 목표를 $100{\pm}5$%로 하여 방사선 치료 계획을 실시해 그 결과를 분석하였다. 결 과: 중심선에서 측정된 FMVC의 절대선량 평균값은 실험에 사용된 모든 두께에서 고체 팬톰과 볼루스에 대해 0.1~0.2% 내외의 차이를 보여 거의 일치함을 보였고, 선량 분포 역시 모든 두께에서 오차 범위 ${\pm}3%$에 대해 97% 이상 일치하였다. 또한 FMVC를 이용한 방사선 치료 계획 및 임상 적용에서 목표한 피부 선량 획득하였다. 결 론: FMVC는 기존 상용화된 조직 등가 물질과 광자선 투과도에 따른 절대 선량 및 선량 분포가 거의 동일하여 그 역할을 대체함에 있어 부족한 점이 없었다. FMVC는 방사선 치료 계획에서 원하는 피부 선량을 얻어낼 수 있고 기존 보조 기구의 기능을 유지할 수 있어 환자 자세의 재현성 유지와 볼루스의 역할을 동시에 수행할 수 있다. 또한 기존 수조를 통한 치료 방식의 단점인 물 엎질러짐으로 인한 장비 위해 가능성을 줄이고, 몸이 자유롭지 않은 환자의 치료 시 자세와 Gantry angle을 다양하게 구현할 수 있다. 따라서 FMVC는 광자선 피부암 치료 시 매우 유용할 것으로 사료된다.

  • PDF

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • 한국의학물리학회지:의학물리
    • /
    • 제32권3호
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

6MV X-선과 전산화 단층 촬영상을 이용한 뇌하수체 종양 치료계획 (Three Dimensional Dose Planning Using 6MV X-ray and Multiaxial Computed Tomography for Pituitary Adenoma)

  • 이명자;최태진
    • Radiation Oncology Journal
    • /
    • 제3권1호
    • /
    • pp.59-64
    • /
    • 1985
  • Computation of three dimensional dose distribution using CT image and RT plan was applied to a case of pituitary adenoma. Algorithm was based on two dimensional Tissue Maximun Ratio model extended to the third dimension. The resulting isodose curve of transeverse, coronal and sagittal section was demonstrated. This RT plan allows computation of dose distribution in any arbitarily defined plane in addition to conventional cross sectional view.

  • PDF

Gradient based algorithm을 이용한 multiple slice IMRT optimization (IMRT optimization on multiple slice using gradient based algorithm)

  • 이병용;조병철;이석;정원균;안승도;최은경;김종훈;장혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제9권4호
    • /
    • pp.201-206
    • /
    • 1998
  • 세기변조방사선치료 (Intensity Modulation Radiation Therapy; IMRT) 의 치료계획 목적으로 사용하기 위한 선량최적화 방법을 Gradient based algorithm을 이용하여 개발하였다. 환자의 치료 관심 부위를 포함하는 약 10-30 CT 단면에 대하여 각 단면 별로 선량최적화를 실시하였고, 장기별로 최대 허용선량을 지정하였으며, 표적의 선량은 100$\pm$5 %로 제한하였다. beamlet의 크기는 8$\times$8 $cm^2$으로 제한하였고, beam size가 크지 않으므로 beam diverge는 고려하지 않았다. beamlet 하나가 만드는 선량분포를 미리 계산한 후, 선량중첩방식으로 전체 선량분포를 계산하였다. 고정된 동일평면에 대하여 5방향에서 입사하는 빔에 대한 최적화를 실시하였으며, 그 효용성을 비교하기 위해, 1, 3, 5, 7, 9 방향에 입사하는 빔과 최적화지수를 구하였다. 선량최적화에 소요되는 시간은 대체로 slice 수에 비례하였으며, 계산시간과 최적화지수를 비교할 때 빔의 개수가 3-7개 일 때 가장 적합하였다. 다중단면에 대한 선량최적화를 beam divergence를 고려하지 않을 때, 단일 단면에 대한 선량최적화를 반복 시행함으로써 얻을 수 있었다. 선량최적화의 결과가 선량중심의 위치에 따라 민감하게 변하는 경우가 발생하였으며, 이를 개선하기 위해서는 선량중심의 최적화가 개발될 필요성이 있었다.

  • PDF

방사선 동시조사법에 의해 제조된 FEP-g-PSSA 막의 그래프트 분포에 관한 연구 (A Study on the Graft Distribution of the FEP-g-PSSA Membranes Prepared by a Simultaneous Irradiation Method)

  • 고범석;신준화;손준용;노영창;장필현
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.268-271
    • /
    • 2009
  • 본 연구에서는 방사선 동시조사법에 의해 제조된 FEP-g-PSSA 막 단면을 SEM-EDX 기기로 분석하여 스티렌 술폰산 고분자(PSSA)의 막 내부로의 분포 경향을 연구하였다. 본 실험에서는 그래프트율, FEP 필름 두께, 선량률, 그래프팅 용매 등 여러 조사조건이 그래프트 고분자의 분포에 미치는 영향을 중점적으로 연구하였다. 실험 결과 균일하게 그래프트된 FEP-g-PSSA 막을 얻기 위해서는 필름 두께가 증가할수록 높은 그래프트율이 요구되어지고, 같은 조사 선량에서는 낮은 조사 선량률로 그래프트하는 것이 효과적임을 보여준다.

속중성자선의 선량분포에 관한 연구 (Fast Neutron Beam Dosimetry)

  • 이효남;지영훈;지광수;이동한
    • 대한방사선치료학회지
    • /
    • 제9권1호
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Magnetic resonance image-based tomotherapy planning for prostate cancer

  • Jung, Sang Hoon;Kim, Jinsung;Chung, Yoonsun;Keserci, Bilgin;Pyo, Hongryull;Park, Hee Chul;Park, Won
    • Radiation Oncology Journal
    • /
    • 제38권1호
    • /
    • pp.52-59
    • /
    • 2020
  • Purpose: To evaluate and compare the feasibilities of magnetic resonance (MR) image-based planning using synthetic computed tomography (sCT) versus CT (pCT)-based planning in helical tomotherapy for prostate cancer. Materials and Methods: A retrospective evaluation was performed in 16 patients with prostate cancer who had been treated with helical tomotherapy. MR images were acquired using a dedicated therapy sequence; sCT images were generated using magnetic resonance for calculating attenuation (MRCAT). The three-dimensional dose distribution according to sCT was recalculated using a previously optimized plan and was compared with the doses calculated using pCT. Results: The mean planning target volume doses calculated by sCT and pCT differed by 0.65% ± 1.11% (p = 0.03). Three-dimensional gamma analysis at a 2%/2 mm dose difference/distance to agreement yielded a pass rate of 0.976 (range, 0.658 to 0.986). Conclusion: The dose distribution results obtained using tomotherapy from MR-only simulations were in good agreement with the dose distribution results from simulation CT, with mean dose differences of less than 1% for target volume and normal organs in patients with prostate cancer.