• 제목/요약/키워드: radiation dose

검색결과 5,014건 처리시간 0.033초

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가 (Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation)

  • 이동연;강영록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권2호
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

수정체 방사선 방호에 관한 규제기준 및 기술기준 검토 (Review on Regulatory and Technical Standards of Radiation Protection for Lens of the Eye)

  • 김시영;황석주;김재성;손중권
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2024
  • The International Commission on Radiological Protection (ICRP) lowered the annual equivalent dose limit of lens of the eye for radiation workers from 150 to 20 mSv in April 2011. This trend of lowering the equivalent dose limit for radiation workers has been observed worldwide, including international organizations such as the International Atomic Energy Agency (IAEA), International Organization for Standardization (ISO) and the European Commission (EC). In 2016, the Nuclear Safety and Security Commission of South Korea published research results that included a proposal for lowering the equivalent dose limit of lens of the eye for radiation workers in line with the ICRP recommendation. However, as of now, South Korea's Nuclear Safety Act and related regulations still specify an annual equivalent dose limit of lens of the eye as 150 mSv for radiation workers. The IAEA and ISO have issued guidelines regarding radiation protection for lens of the eye and recommended a dose level for the lens of the eye at 5 or 6 mSv per year for periodic monitoring of the equivalent dose for the lens of the eye.

Using RESRAD-BUILD for Potential Radiation Dose Estimation the Korea Research Reactor-1 When It Opens to the Public as a Memorial Hall

  • Lee, Sangbok;Yoon, Yongsu;Kim, Sungchul
    • International Journal of Contents
    • /
    • 제16권2호
    • /
    • pp.102-108
    • /
    • 2020
  • The purpose of this study was to estimate and analyze the potential radiation dose that the future visitors and the cleaning staff will be exposed to when the KRR-1 reactor is converted into a memorial hall. The radiation doses were estimated using the RESRAD-BUILD software, where case, building, receptor, shielding, and source parameters were applied as the input data. Also, the basic data for the assessment of the radiation doses were determined in an indirect manner using the data on the waste generated during the decommissioning process of the reactor. The assessment results indicate that the potential radiation dose to the visitors and the cleaning staff will be less than 1 mSv, the annual dose limit for the general public. However, if anyone for a significant period of time is close to the reactor, the overall dose will increase. The radiation dose for the future visitors and the cleaning staff was determined to be lower than the annual dose limit for the general public. Given such a risk, systematic measures, such as periodic monitoring or limiting hours, are imperative.

컴퓨터 단층촬영 방사선 노출 관리 시스템 소프트웨어 설계 (System Software Design of Computerized Tomography Radiation Dose Management)

  • 양유미;조상욱;이길흥
    • 디지털산업정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.41-48
    • /
    • 2014
  • This paper provides the design of system software for the management of radiation dose that is generated by using computerized tomography(CT). Recently, the radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only in nuclear power plant but in medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, now the exposure management of patients have been required. As surgery and inspections using the radiation have increased, this medical radiation exposure is increasing too. But it is a real situation that medical institutions don't know the level of radiation exposure applied to the patient. Therefore, a system for managing the radiation exposure of a patient from the medical institution is required. This paper proposes a design of a software program that manages the radiation exposure of CT which is a typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would be of help to optimize the medical exposure of the patient.

DIFFERENTIAL EXPRESSION OF RADIATION RESPONSE GENES IN SPLEEN, LUNG, AND LIVER OF RATS FOLLOWING ACUTE OR CHRONIC RADIATION EXPOSURE

  • Jin, Hee;Jin, Yeung Bae;Lee, Ju-Woon;Kim, Jae-Kyung;Lee, Yun-Sil
    • Journal of Radiation Protection and Research
    • /
    • 제40권1호
    • /
    • pp.25-35
    • /
    • 2015
  • We analyzed the differential effects of histopathology, apoptosis and expression of radiation response genes after chronic low dose rate (LDR) and acute high dose rate (HDR) radiation exposure in spleen, lung and liver of rats. Female 6-week-old Sprague-Dawley rats were used. For chronic low-dose whole body irradiation, rats were maintained for 14 days in a $^{60}Co$ gamma ray irradiated room and received a cumulative dose of 2 Gy or 5 Gy. Rats in the acute whole body exposure group were exposed to an equal dose of radiation delivered as a single pulse ($^{137}Cs$-gamma). At 24 hours after exposure, spleen, lung and liver tissues were extracted for histopathologic examination, western blotting and RT-PCR analysis. 1. The spleen showed the most dramatic differential response to acute and chronic exposure, with the induction of substantial tissue damage by HDR but not by LDR radiation. Effects of LDR radiation on the lung were only apparent at the higher dose (5 Gy), but not at lower dose (2 Gy). In the liver, HDR and LDR exposure induced a similar damage response at both doses. RT-PCR analysis identified cyclin G1 as a LDR-responsive gene in the spleen of rats exposed to 2 Gy and 5 Gy gamma radiation and in the lung of animals irradiated with 5 Gy. 2. The effects of LDR radiation differed among lung, liver, and spleen tissues. The spleen showed the greatest differential effect between HDR and LDR. The response to LDR radiation may involve expression of cyclin G1.

Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구 (A Study on the Construction of MVCT Dose Calculation Model by Using Dosimetry Check™)

  • 엄기천;김창환;전수동;백금문
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.431-441
    • /
    • 2020
  • The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

일반인들의 항공여객기 이용 시 우주방사선 피폭선량 비교 분석 (Analysis of Cosmic Radiation Dose of People by Abroad Travel)

  • 장동근;신상화
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권4호
    • /
    • pp.339-344
    • /
    • 2018
  • Humans received an exposure dose of 2.4 mSv of natural radiation per year, of which the contribution of spacecraft accounts for about 75%. The crew of the aircraft has increased radiation exposure doses based on cosmic radiation safety management regulations There is no reference to air passengers. Therefore, in this study, we measured the radiation exposure dose received in the sky at high altitude during flight, and tried to compare the radiation exposure dose received by ordinary people during flight. We selected 20 sample specimens, including major tourist spots and the capital by continent with direct flights from Incheon International Airport. Using the CARI-6/6M model and the NAIRAS model, which are cosmic radiation prediction models provided at the National Radio Research Institute, we measured the cosmic radiation exposure dose by the selected flight and departure/arrival place. In the case of exposure dose, Beijing was the lowest at $2.87{\mu}Sv$ (NAIRAS) and $2.05{\mu}Sv$ (CARI - 6/6M), New York had the highest at $146.45{\mu}Sv$ (NAIRAS) and $79.42{\mu}Sv$ (CARI - 6/6M). We found that the route using Arctic routes at the same time and distance will receive more exposure dose than other paths. While the dose of cosmic radiation to be received during flight does not have a decisive influence on the human body, because of the greater risk of stochastic effects in the case of frequent flights and in children with high radiation sensitivity Institutional regulation should be prepared for this.

삼차원 뇌혈관조영술에서 테이블 높이와 확대율 조절에 따른 수정체 선량 감소에 대한 연구 (Radiation Dose Reduction of Lens by Adjusting Table Height and Magnification Ratio in 3D Cerebral Angiography)

  • 윤종태;이기백
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권4호
    • /
    • pp.313-320
    • /
    • 2022
  • Both angiography and interventional procedures accompanied by angiography provide many diagnostic and therapeutic benefits to patients and are rapidly increasing. However, unlike general radiography or computed tomography using the same X-ray, the amount of radiation is quite high, but the dose range can vary considerably for each patient and operator. The high sensitivity of the lens to radiation during cerebral angiography and neurointervention is already well known, and although there are many related studies, it is insufficient to easily reduce radiation in diagnosis and treatment. In this situation, in particular, by adding three-dimensional rotational angiography (3D-RA) to the existing two-dimensional (2D) angiography, it is now possible to make an accurate diagnosis. However, since this 3D-RA acquires images through projection of more radiation than before, the exposure dose of the lens may be higher. Therefore, we tried to analyze whether the radiation dose of the lens can be reduced by moving the lens out of the field range by adjusting the table height and magnification ratio during the examination using 3D-RA. The surface dose was measured using a rando phantom and a radiophotoluminescent glass dosimeter (PLD) and the radiation dose was compared by adjusting the table height and magnification ratio based on the central point. As a result, it was found that the radiation dose of the lens decreased as the table height increased from the central point, that is, as the lens was out of the field of view. In conclusion, in 3D-RA, moving the table position of about 2 cm in height will make a significant contribution to the dose reduction of the lens, and it was confirmed that adjusting the magnification ratio can also reduce the surface dose of the lens.