• Title/Summary/Keyword: radiation detector

Search Result 842, Processing Time 0.025 seconds

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Measuring Circuit Design of RI-Gauge for Compaction Control (성토시공관리용 방사성 동위원소 이용계기의 측정회로설계)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Ki-Joon;Whang, Joo-Ho;Song, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • An objection of this study is to develop a measuring circuit of a gauge using radioisotope for compaction control. The gauge developed in this study makes use of radioisotope with the activity exempted from domestic atomic law and consists of measuring circuits for gamma-rays and thermal neutrons, a high voltage supply unit, and a microprocessor. To obtain meaningful numbers of pulse counts, parallel five and two circuits are provided for gamma-rays and thermal neutrons, respectively. Being simple in electrical characteristics of G-M detector for gamma-rays, pulses are counted through only a shaping circuit. Very small pulses generated from He- 3 proportional detector for thermal neutrons are amplified to the maximum of 50 [dB] and a window comparator accepts only pulses with meaning. To minimize effects of natural environmental radiation and electrical noise, circuits are electrostatically shielded and pulses made by ripples are eliminated by taking frequency of high voltage supplied to the circuit and pulse height of ripples into consideration. One-chip microprocessor is applied to process various counts, results are stored and the gauage is made capable to communicate with PC. Enough and meaningful numbers of pulses are counted with the prototype gauage for compaction control.

  • PDF

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

The Evaluation of Dose Reduction and Quality of Images According to 80 kVp of Scan Mode Change in Pediatric Chest CT (소아 흉부 CT 검사에서 관전압 80 kVp 조건으로 스캔 모드별 방사선량 감소와 화질 평가)

  • Kim, Gu;Kim, Gyeong-Rip;Lee, Eun-Sook;Cho, Hee-Jung;Sung, Soon-Ki;Moon, Seul-ji-a;Kwak, Jong-Hyeok
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.8
    • /
    • pp.284-292
    • /
    • 2019
  • To evaluate the usefulness of pediatric chest CT scans by comparing the dose, examination time, and image quality by applying Helical mode, High-pitch mode, and Volume Axial mode to minimize the radiation exposure and obtain high diagnostic value. Revolution (GE Healthcare, Wisconsin USA) was used to divide PBU-70 phantom into Helical mode, High-pitch mode, and Volume Axial mode. After acquiring images, ROI is set for each image, heart, bone, lung, and back-ground air, and the average value is obtained by measuring CT number (HU) and noise (SD). SNR and CNR were measured and compared with DLP values provided directly by the equipment. Determining statistical significance Statistical analysis was performed using ONE-WAY-ANAOVA using SPSS 21.0. In this experiment, it was possible to inspect at a short time without deterioration of image quality with the lowest dose when using volume axial mode. Although the detector coverage of 16 cm is limited to all pediatric chest CT scans, it is recommended to be actively used in pediatric patients, and further study is needed to apply other test sites in volume axial mode.

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

Dosimetric Influence of Implanted Gold Markers in Proton Therapy for Prostate Cancer (전립선암에 대한 양성자치료에서 금마커에 의한 방사선 선량분포의 영향)

  • Kwak, Jung-Won;Shin, Jung-Wook;Kim, Jin-Sung;Park, Sung-Yong;Shin, Dong-Ho;Yoon, Myong-Geun;Park, So-Ah;Kim, Dong-Wook;Lim, Young-Gyeung;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.