• Title/Summary/Keyword: radiation detector

Search Result 842, Processing Time 0.025 seconds

Study on Improvement of Signal to Noise Ratio for HgI2 Radiation Conversion Sensor Using Blocking Layer (Blocking layer 적용을 통한 HgI2 방사선 변환센서의 신호대 잡음비 향상에 관한 연구)

  • Park, Ji-Koon;Yoon, In-Chan;Choi, Su-Rim;Yoon, Ju-Sun;Lee, Young-Kyu;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using double layer technique tio decrease dark current. High efficiency material in substitution for a-Se have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using Hetero junction already used as solar cell, semiconductor. Particle-In-Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in PIB method. To make up for the weak points, double layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity is measured to evaluate double layer radiation sensor material.

High Energy Resolution Alpha Spectrometer Using a Cryogenic Detector (저온검출기를 이용한 에너지 고 분해능 알파분광 구현)

  • Kim, M.S.;Lee, S.H.;Yoon, W.S.;Jang, Y.S.;Lee, S.J.;Kim, Y.H.;Lee, M.K.
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.132-137
    • /
    • 2013
  • Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of alpha spectrometer using a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. A piece of gold foil of $2{\times}2{\times}0.05mm^3$ was glued to the paramagnetic temperature sensor made of sputtered Au:Er film to serve as an absorber for incident alpha particles. We performed experiments with 241Am source at cryogen free adiabatic demagnetization refrigerator (CF-ADR). A high energy resolution of 6.8 keV in FWHM was obtained for 5.5 MeV alpha particles.

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

A Study on the Genetic Risk and Carcinogenesis Probability of Prostate Cancer Patients Due to Photoneutron Generation (광중성자 발생으로 인한 전립샘암 환자의 유전적 위험과 발암의 확률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2023
  • In this study, the dose of photoneutrons generated during radiotherapy of prostate cancer using high energy was measured using a photo-stimulated luminescence dosimeter. In addition, this study was intended to study the probability of side effects occurring in the abdomen. A medical linear accelerator capable of generating 15 MV energy, True Beam STx (Varian Medical Systems, USA) and a radiation treatment planning system (Eclipse, Varian Medical Systems, USA) were used. A human body phantom was installed on the couch of the linear accelerator, and an Albedo Neutron Optical Stimulation Luminescence Neutron Detector (Landauer Inc., IL, USA) was used to measure the photoneutron dose. The photoneutron dose value in the abdomen of VMAT and 3C-CRT was 52.8 mSv, more than twice as high as VMAT compared to 3D-CRT. During radiotherapy of prostate cancer, the probability of causing side effects in the abdomen due to light neutron dose was calculated to be 3.2 per 1,000 for VMAT and 1.4 for 3D-CRT. By studying the abdomen, which has a major side effect that can occur during radiotherapy of prostate cancer, it is expected that it will be used as a meaningful study to study the quality of life and stochastic effect of prostate cancer patients

Effect of Black Charcoal and Activated Carbon for Reduction of Radon Radioactivity that Emitted from Building Materials (건축재료로부터 방출되는 라돈방사능 감소를 위한 흑탄과 활성탄 효과)

  • Cho, Yun-Min;Lee, Hwa-Hyung
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • Recently, interest in indoor air quality is increasing. Especially, radon radioactivity among the indoor air is a well-known risk factor for lung cancer because of ionizing radiation in the form of ${\alpha}$-particles. This study was carried out to investigate effect of black charcoal and activated carbon for reduction of radon radiation that emitted from building materials. Black charcoal and activated carbon were used as a barrier which was against the infiltration of radon. The source of radon was gypsum board. Two types of charcoal barrier were powder- and board-type with 5 mm, 10 mm thickness respectively. The method for this determination is evaluated radon concentration in chamber. The measurements were performed with radon detector, SARAD3120. Results of this study are as following: Black charcoal and activated carbon confirmed the highly efficient barrier. Radon concentration was reduced from 72% to 85% as compared the control chamber. Radon reduction capability, however, was no difference as barrier's types. Results obtained in ventilation condition, radon concentration shows 5.93 pCi/L on average in the closed condition and shows 2.69 pCi/L in the opened condition.

  • PDF

Development of Simulated HPGe Detector Spectrum for Education (교육용 모사 HPGe 검출기 스펙트럼 개발)

  • Seo, Kyung-Won;Lee, Mo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • From HPGe calibration spectrum of liquid mixed source in cylindrical vial, we developed simulated spectrum for spectrum analysis education. It is the spectrum that combine peaks separated from measured spectrum. After that, spectrum removed statistical variation of channel counts. Statistical fluctuation of the spectrum is made by Box-Muller function. The spectrum contains 18 peaks. The peak's centroid and area were defined exactly. Developed spectra are calibration spectrum, sample spectrum, background spectrum and spectra for efficiency correction for geometry and cascade coincidence.

SEPARATION OF GAMMA-RAYS PRODUCTION FROM $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ REACTIONS USING DOPPLER SHIFT EFFECT

  • Kim, Y.K.;Ha, J.H.;Youn, M.;Han, S.H.;Chung, C.E.;Moon, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.287-290
    • /
    • 2001
  • The 9.17MeV gamma-rays from the $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ reactions were measured. The incident 9.17MeV gamma-ray was produced from the $^{13}C(p,\;{\gamma})^{14}N$ reaction at Ep=1.75MeV resonance. The 1.75MeV proton beam was accelerated using the 3MV SNU-AMS Tandetron and 1.7MV KIGAM Tandem accelerators. The enriched 13C target was $121{\mu}g/cm^2$ self-supporting foil, and we used liquid nitrogen as a resonant absorption target. We used a HP-Ge detector with 30% efficiency and less 2keV energy resolution. We developed new method to detect the scattered 9.17MeV gamma-ray from the nitrogen target by using the energy difference between the Doppler shifted gamma-ray from the $^{13}C(p,\;{\gamma})^{14}N$ reaction and the resonant absorbed and rescattered gamma-ray from the $^{14}N({\gamma},\;{\gamma})^{14}N$ reaction.

  • PDF

A Study on a position detection of radiation using CCD camera (영상센서를 이용한 방사선원 위치탐지 연구)

  • Lee, Nam-Ho;Choi, Chang-Whan;Shin, Ho-Chul;Jun, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.324-326
    • /
    • 2006
  • CCD형 영상소자는 방사선 피폭 시 표면과 격자내부에 모두 손상을 받게 되며, 감마방사선이나 X선과 같은 고에너지의 이온화 방사선에 노출될 경우 격자 실리콘 내부에 전자-전공쌍(Electron-hole pair, EHP)이 발생된다. 이러한 EHP는 CCD의 순간 출력 광전류로 변환되어 백색 화소 형태의 영상잡음으로 가시화되며, 이 화소 수는 피폭 방사선량에 비례하여 증가하는 특성을 지니고 있다. 따라서 출력 영상정보를 분석하면 조사된 방사선의 양과 특성을 측정할 수 있다. 본 연구에서는 CCD를 이용하여 가상의 방사능 물질 누출 공간에서 방사선원의 방향과 거리정보를 고속으로 탐지하기 위한 장치와 고속 측정 알고리즘을 구현하고 실제 방사선장에서 실증시험을 수행하였다. 방사선 탐지기는 콘형 납 콜리메이터(Collimator)와 가시광 변환용 신틸레이터(CsITl) 및 차폐체로 구성된 센서부와 제어 및 방사광 신호처리를 수행하는 PC부로 구성된다. 감마방사선($^{60}Co$) 방사선장 실증시험에서 방사선원간 거리 83cm에서 측정된 거리 탐지는 5.3%의 오차로 확인되었다. 이 방사선 탐지기는 임의의 고방사선 누출사고에 대한 초기대응 작업을 수행하기 위한 무인 이동로봇용 방사선 탐지기로 활용이 가능하다.

  • PDF

Calibration of CR-39 for Measurement of Radon in Air (공기중의 라돈 농도 측정을 위한 CR-39의 교정)

  • Park, Y.W.;Chang, S.Y.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.18-22
    • /
    • 1989
  • In order to calibrate the CR-39 Solid State Nuclear Track Detector (SSNTD), a closed -circulation type SSNTD-Calibration-System containing a radon-cup with the Millipore filter has been set-up, and the tracks produced on the SSNTD were measured for the known amount of radon concentration. Calibration factor for the time integrated radon concentration as a function of the track density on CR-39 was estimated to be $0.24{\pm}0.09(pCi/l)\;day/(Tr/cm^2)$.

  • PDF

The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom (6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Moon, Sun-Rock
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF