• Title/Summary/Keyword: radiant burner

Search Result 25, Processing Time 0.027 seconds

An Experimental Study on Combustion Characteristics of Radiant Burner (복사 버너의 연소특성에 관한 실험적 연구)

  • Wie, Jae-Hyug;Lee, Dae-Rae;Kim, Young-Soo;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.19-25
    • /
    • 2006
  • Energy efficient and low pollution combustion systems the use gaseous fuels have been in great demand in recent year. Radiant burner in many different forms are emerging as very desirable combustion systems for same reason. Porous radiant burners are used in drying, preheating and curing, and in other type of materials processing and manufacturing processes. However, little knowledge is available about the operating characteristics and the structure of flames in porous ceramic fiber radiant burners. The objective of the present work is to investigate the global performance characteristics of the ceramic fiber burner. A detailed study which includes the spectral intensity, gas temperature, radiation efficiency and global pollutant emissions. Another objective is to study the flame structure of the ceramic fiber burner by measuring the local gas temperature. The results indicate that ceramic fiber burner do offer a 19-44% gain in radiant efficiency. The ceramic fiber burner exhibit significant spectral intensity peaks in the band at $2.0-2.5{\mu}m$. The local temperature distribution inside the mat and near the mat surface as a function of the equivalence ratio can be reasonably interpreted by the relation of the heat balance in the mat and movement of the reaction zone. Nox emission from ceramic fiber burner is less than 25ppm throughout the operating range.

  • PDF

[ NOX ] Emission Characteristics in Radiant Tube Burner with Oscillating Combustion Technology (맥동연소기술이 접목된 복사관 버너에서의 NOX 배출 특성)

  • Cho, Han-Chang;Cho, Kil-Won;Kim, Hoo-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • An experimental study was carried out in a small-scale test furnace to investigate the performance, such as $NO_X$ emission, enhancement of heat transfer, uniformity of temperature, and etc, of oscillating combustion applied in radiant tube burner system. A premixed type burner and a cyclic oscillating control valve were designed and used. The fuel, used commercial LPG in this study, was only oscillated using the cyclic oscillating control valve. As oscillating combustion was applied in radiant tube burner system, it is found that $NO_X$ emission, compared to no oscillation, could be reduced by 38% at $90{\sim}120rpm\;(1.5{\sim}2.0Hz)$. However, as oscillating frequency was increased, effect of abatement of $NO_X$ emission is gradually reduced. From the measurement of furnace heating time from $100^{\circ}C$ to $720^{\circ}C$, heat transfer is increased by 11.5% at the oscillation of 120rpm. Temperature distribution of radiant tube surface is more uniform at oscillation of 120rpm with decrease of the peak temperature and increase of low temperature. From these results, it is confirmed that oscillating combustion is useful in radiant tube burner system.

An Experimental Study on Effect of Temperature and Oxygen fraction of Intake Air on Fuel Consumption in Radiant Tube Burner (Radiant Tube 버너에 있어서 흡기 온도 및 산소분물이 연료 소모에 미치는 영향)

  • Kim Hyun-woo;Lee Kyung-Hwan;Roh Dong-Soon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.73-81
    • /
    • 2005
  • An Experimental study was conducted to investigate the effective way for fuel consumption improvement in radiant tube burner heating system used in steel manufacturing process. To find effectiveness of increase of temperature and oxygen fraction of intake air on fuel consumption, the model radiant tube burner heating system with recuperator was designed to be able to adjust temperature and oxygen fraction of intake air, and was operated under various conditions with oxygen concentration in exhaust gas changed. The results show that burner chamber temperature was increased about $10\%$ of intake air temperature increase. so it was difficult to expect fuel consumption improvement. But only 1 or $2\%$ increase of oxygen fraction in intake air made a significant improvement in fuel consumption even though it made much NOx emissions also. Therefore, if NOx emissions is controlled under regulation with burner modification, it is expected that increase of oxygen fraction in Intake air is effective way to improve fuel consumption.

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.13-18
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. High radiation efficiency is one of the most important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. Radiation efficiency is one of the important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

A Study on Failure Prevention of Radiant Heater Tube (복사전열 가열로 튜브의 파손방지에 대한 연구)

  • 윤기봉;심상훈;유홍선;오현환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Radiant heater tubes with an inside burner are designed to transfer the heat generated from the burner to the outside of the tube by radiation. Hence, tube metal must suffer high temperature of approximately 900-$1000^{\circ}C$. The radiant tube is usually manufactured by centrifugal casting with high Ni-Cr alloys. In this study, failure analysis results of the radiant tube are reported. Failure mechanism of the tube was investigated by visual observation of the foiled tube, metallographic study of the cracked region and chemical analysis of tube metal and oxide scales. It was argued that the main cause of the cracking is repeated oxidation of the tube metal located beneath the thick oxide scale. Oxidation was caused by abnormally high operating temperature which can be verified by aged microstructure and internal void formation.

  • PDF

Combustion and Emission Characteristics of the Surface Flames in Porous Ceramic Burner (다공세라믹 버너를 이용한 표면화염의 연소 및 배기특성)

  • Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The surface flames in porous ceramic burner are experimentally characterized to investigate the effects of equivalence ratio and firing rates. The results show that the surface flames are classified into green, red radiant and blue surface flame as decrease of equivalence ratio. And each flame is maintained very stably and shows the same flame characteristics at any orientation of ceramic burner. Particularly the blue surface flame was found to be very stable at very lean equivalence ratio at 200 to $800\;kw/m^2$ firing rates. And the exhausted NOx was analysed to find out which flame has lower NOx emission. The blue surface flame showed the lowest NOx emission regardless of the location of burner since it sustained very stable at lean mixture ratio.

  • PDF

A Study of Characteristics of Combustion Radical and Exhausted Emissions in a Radiant Burner with Porous Ceramic Mat (다공성 세라믹 매트를 이용한 복사버너에서의 연소라디칼 특성과 배기배출물에 관한 연구)

  • Kim, Young-Su;Cho, Seung-Wan;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.539-546
    • /
    • 2007
  • An experimental study was performed to investigate the characteristics of chemiluminescence in a radiant burner, varying the excess air ratio from 0.91 to 1.67 at firing rate 80.5 to 134.2 kW/m2 on $OH^*,\;CH^*,\;{C_2}^*$ in LNG-Air premixed flames. The signals from electronically excited states of $OH^*,\;CH^*,\;{C_2}^*$ were detected using a Intensified Couple Charged Detector (ICCD) camera. The measurements of exhausted emission were made to investigate the correlation between chemiluminescence and emissions. The chemiluminescence intensity was increased with increase of firing rate like characteristics of $NO_x$ emission. $NO_x$ also increased with increase of firing rate and excess air ratio. It is found that offset of firing rate is more dominant excess air ratio $NO_x$ emission. The maximum chemiluminescence intensity occurs near the stoichiometric excess air ratio or lean conditions in case of high firing rate and the maximum intensity occurs rather than rich conditions in case of relatively low firing rate. Amount of $NO_x$ emission is maximum at near stoichiometric excess air ratio, which is chemiluminescence intensity is maximum.

An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh (금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구)

  • You, Hyun-Seok;Lee, Hyun-Chan;Lee, Joong-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF

Characteristic Evaluation of Industrial Radiant Tube Burner System with Oscillating Combustion Technology - NOx Reduction and Performance Improvement - (맥동연소기술을 적용한 산업용 복사관 버너시스템의 특성 평가 - NOx 저감 및 성능 향상 -)

  • Oh, Hyuk-Jin;Cho, Han-Chang;Cho, Kil-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.539-545
    • /
    • 2011
  • Combustion characteristics of industrial radiant tube (RT) burners with forced oscillating combustion technology are investigated using a real-scale (125,000 kcal/h) industrial RT burner facility in both laboratory and field tests. Three different types of industrial RT burners using a by-product gas from the iron-and-steelmaking process are examined in a laboratory facility equipped with a W-type RT. During the field tests, an industrial RT burner is characterized in a large facility equipped with multiple RTs. Their performance and emission controls are investigated under diverse operating conditions. The feasibility of the forced oscillating combustion technology is evaluated by the extent of $NO_x$ reduction and the efficiency improvement. These improvements are able to save energy, extend the RT lifetime, and enhance productivity. The operating conditions that achieve the best performance and emission control for each RT burner are determined.