• Title/Summary/Keyword: radial pulse wave

Search Result 81, Processing Time 0.029 seconds

The Study for Correlation Characteristics on Radial Artery and Floating/sinking Pulse with BMI (BMI에 따른 요골동맥의 혈관특성과 부/침맥과의 상관관계 연구)

  • Lee, Yu-Jung;Lee, Jeon;Lee, Hae-Jung;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.121-126
    • /
    • 2008
  • Pulse diagnosis refers to the process of diagnosing a patient by feeling an artery on the wrist based on the shape that the pulse take s while the hold-down pressure increase. The styloid process artery on the wrist is usually felt, and the pulse is taken on Chon, Gwan and Cheok using three fingers. This study is to examine the structural difference in the location of pulse diagnosis by measuring and analyzing blood diameter, blood depth, and blood flow velocity of the location of pulse diagnosis by using ultrasonic wave (VOLUSION730 PRO, GE Medical, U.S.A). This study also attempted to grasp whether the characteristics of blood vessels differ depending on Body Mass Index (BMI) and analyzed their correlation with Oriental medical pulse diagnosis. The male subjects without cardiovascular diseases were divided into the normal BMI group, the underweight group and the overweight group and 10 people of each group were measured, Blood depth, blood diameter and blood flow velocity at the location of pulse diagnosis (Chon, Gwan, Cheok) of the wrists of left and right hands were measured and the pulse wave was measured by using pulse diagnosis instrument (3-D Mac, DaeyoMedi, Korea).The results of this study showed that the characteristics of blood vessels differ depending on the degrees of obesity, and the characteristics of floating pulse and sinking pulse of Oriental medical pulses were related to the degrees of obesity. This shows that the characteristics of the blood vessels of subjects and BMI information are the major indicators for diagnosis and are the matters that must always be considered when developing the algorithm of pulse diagnosis.

  • PDF

Analysis of Magnetic Field Variation for Pulse Wave by Using Finite Element Method (유한 요소법을 이용한 맥진 파형의 자기장 변화 분석)

  • Park, Tae-Young;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.90-96
    • /
    • 2014
  • The magnetic field variation by the permanent magnet fluctuation positioned on a "Chwan" of wrist according to the movement of radial artery was generated. The clip-type pulsimeter equipped with a Hall device sensing magnetic field pulse movement analyzed the characteristics of pulse wave as output signals. The magnetic field curve and pulse waveform simulated by the finite element method were compared and analyzed with each other. Also, the variation of magnetic field distribution one permanent magnet investigated by the fabrication of clip-type pulsimeter simulator. This result suggests that the clip-type pulsimeter can be used the reproducible and efficacious oriental diagnostic medical instrument.

A study on floating and sinking pulse by classification of pulse pattern through analysis of P-H volume-curve at 5 applied pressure levels (5단계 가압에 대한 맥파 변화 분석에 의한 맥 패턴 분류와 부침맥(浮沈脈) 연구)

  • Kown, Sun-Min;Kang, Hee-Jung;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • Objectives: The information on the depth where pulse wave appears is as important as pulse waveform. The aim of this study was to classify pulse pattern using pressure-height(P-H) volume-curve by 5 applied pressure levels to find out the information on the depth of pulse and interpret the floating & sinking pulse in oriental medical pulse diagnosis. Methods: We used 3 dimensional pulse imaging analyser (DMP-3000, DAEYOMEDI Co., Korea), which measures radial pulse waveforms noninvasively by way of tonometric method at 5 applied pressure levels, and shows P-H volume-curves by applied pressure. 448 subjects were enrolled, pulse waveforms were measured and the P-H volume-curves were gained on the three locations of Chon, Kwan, and Cheok. Results: Gained P-H volume curves were classified into 3 types ; increase type, decrease type, and increase-decrease type. Increase-decrease type appeared more often on Chon and Kwan, while increase type appeared more often on Cheok. In a few cases, decrease-type appeared on Chon and Kawn, however it never appeared on Cheok. Conclusions: Through the classification of pulse by P-H volume-curve, we gained the information on the depth of pulse. We speculate the decrease type as floating pulse, the increase-decrease type as middle pulse, and the increase type as sinking pulse in oriental medical pulse diagnosis. After more researches on P-H volume-curve by applied pressure, the P-H volume-curve may be used as an important factor for pulse diagnosis.

Computerized pulse diagnosis system (컴퓨터 맥진시스템)

  • Lee, Ho-Jae;Huh, Woong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.81-90
    • /
    • 1996
  • In this paper, we implemented a computerized pulse diagnosis system for the developement of pulse diagnosis algorithms and the generalization of the pulse diagnosis. The system consists of the hardware and software. The hardware detects pulse waves and inputs the waves into the computer system, while the software not only manages and analyzes the input pulse wave data but also privides the database. In order to clinically test the developed pulse diagnosis system, we applied the carotid-radial pulse diagnosis algorithm to the system. As the results, it is found that the genralizatio of the pulse diagnosis is possible.

  • PDF

Study on the Variation of Menstruating Women's Pulse Wave - In the Focus of Blood Circulation Index, Pulse Energy, Radial Augmentation Index - (여성의 월경(月經) 맥파(脈波) 특성 연구 - 혈액순환지수, 맥(脈)에너지, 혈관탄성계수를 중심으로 -)

  • Lee, Jeong Won;Kim, Yi Soon;Hong, Dong Kyun;Kim, Gyeong Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.246-252
    • /
    • 2013
  • A descriptive, comparative study was performed using female college students as experimental subjects. The primary objective was to compare the changes in pulse waves that take place during normalcy and during menstruation. The second objective was to compare the pulse waves of experimental subjects with severe menstrual pain and experimental subjects with minor or no menstrual pain during menstruation and during normalcy. The subjects of this experiment were female college students attending D University, located in Pusan, and the data were collected from September 2011 to February 2012. Their blood circulation index and pulse-wave factors were measured. During normalcy, these data were gauged a week to ten days after menstruation, and during menstruation, they were gauged two to three days after the start of menstruation, when the menstrual pain was at its peak. The results was as follows. In the characteristics of the blood circulation index, the index increased during menstruation, resulting in an increase in only the blood volume of the left ventricle. And the pulse energy of the left Chon, Kwan, Cheok and right Cheok were significantly higher during menstruation. Additionally, the average pulse energy in the left hand was distinctively lower in the menstrual group than in the normalcy group. There is a difference in blood pulse factors between normalcy and during menstruation, as well as a difference in blood pulse factors in experiment group without menstrual pain and experiment group with menstrual pain. These differences were particularly observed in the blood circulation index, pulse energy.

Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature (손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

2-dimensional Measurement of Arterial Pulse by Imaging Devices (촬상소자를 이용한 맥동의 2차원 계측)

  • Kim, Ki-Wang
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • Objectives: For the traditional pulse diagnosis in Oriental Medicine, not only the pulse shape in time domain, but the width, length and depth of arterial pulse also should be measured. However, conventional pulse diagnostic systems have failed to measure the spatial parameters of the arterial pulse e.g. effective length of arterial pulse in the wrist. In fact, there are many ways to measure that kind of spatial features in arterial pulsation, but among them, the method using image sensor provides relatively cheap and simple way, therefore I tested feasibility of measuring 2-dimensional pressure distribution by imaging devices. Methods: Using widely used PC cameras and dotted balloons, the subtle oscillation of skin over the radial artery was recorded continuously, and then the displacement of every dot was calculated. Consequently, the time course of that displacements shows arterial pulse wave. Results: By the proposed method I could get pressure distribution map with 30Hz sampling rate, 21steps quantization resolution, and approximately 1mm spatial resolution. With reduced quantization resolution, $3cm{\times}4cm$ view angle could be achieved. Conclusion: Although this method has some limitations, it would be useful method for detecting 2-dimensional features of arterial pulse, and accordingly, this method provides a novel way to detect 'narrow pulse', 'wide pulse', 'long pulse', 'short pulse', and their derivatives.

  • PDF

Detection of Radial Pulse by Combinational Fiber-optic Transducer (조합형 광섬유 트랜스듀서에 의한 요골맥파의 검출)

  • Park, Seung-Hwan;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • The human pulse wave is a vital biosignal that includes the diagnostic data related with the heart and the cardiovascular system of human body. Based on the mechanical transducing method, a pulse detection transducer using optical fiber was developed to acquire the pulses non-invasively. To improve the detection efficiency, we proposed a new design that consists of two combinational parts; detecting part, which is in contact with the pulsating skin and transmits the displacement motion of the pulsating skin to the sensing part, and sensing part, which converts the physical quantity transmitted from the detecting part to electronic signal. By using the new method, we confirmed that the proposed transducer can detect the C point(incisura) and the T wave(tidal wave) which is not easily detected by existing transducers.

  • PDF

Radial Electrical Impedance: A Potential Indicator for Noninvasive Cuffless Blood Pressure Measurement

  • Huynh, Toan Huu;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.239-244
    • /
    • 2017
  • Noninvasive, cuffless, and continuous blood pressure (BP) monitoring is essential to prevent and control hypertension. A well-known existing method for this measurement is pulse transit time (PTT), which has been investigated by many researchers as a promising approach. However, the fundamental principle of the PTT method is based on the time interval taken by a pulse wave to propagate between the proximal and distal arterial sites. Consequently, this method needs an independent system with two devices placed at two different sites, which is a problem. Even though some studies attempted to synchronize the system, it is bulky and inconvenient by contemporary standards. To find a more sensitive method to be used in a BP measurement device, this study used radial electrical bioimpedance (REB) as a potential indicator for BP determination. Only one impedance plethysmography channel at the wrist is performed for demonstrating a ubiquitous BP wearable device. The experiment was evaluated on eight healthy subjects with the ambulatory BP monitor on the upper arm as a reference. The results demonstrated the potential of the proposed method by the correlation of estimated systolic (SBP) and diastolic (DBP) BP against the reference at $0.84{\pm}0.05$ and $0.83{\pm}0.05$, respectively. REB also tracked the DBP well with a root-mean-squared-error of $7.5{\pm}1.35mmHg$.