• Title/Summary/Keyword: radial movement

Search Result 87, Processing Time 0.022 seconds

Effects of Long- and Short-term Consumption of Energy Drinks on Anxiety-like, Depression-like, and Cognitive Behavior in Adolescent Rats

  • Lee, Joo Hee;Lee, Jong Hyeon;Choi, You Jeong;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • Purpose: The purpose of this study was to understand the impact of long- and short-term energy drinks on anxiety-like, depressionlike, and cognitive behavior in adolescent rats. Methods: Adolescent rats (age six weeks) were randomly classified into a control group (CON), a long-term administration group (LT), and a short-term administration group (ST). The LT group was orally administered 1.5 mL/100 g (body weight) of energy drink twice daily for 14 days, the ST group was orally administered for one day, and the control group applied the same amount of normal saline. Later, an open-field test, a forced swim test, novel object recognition test, and an 8-arm radial maze test was conducted to assess the rats' anxiety, depression, and cognitive function. Results: There were different effects in the long- and short-term groups of energy drink administration. In the LT group, anxiety- and depressive-like behavior increased because of increased movement in the side corner and decrease of immobility time. Also, the time to explore novel objects decreased, and the number of correct responses was reduced, indicating a learning and memory function disorder. However, the ST group was not different from the control group. Conclusion: These results indicate that long-term consumption of energy drinks can increase anxiety-like, depression-like behavior, and this can lead to decrease in learning and memory functions. Thus, nurse and health care providers should understand the impact of energy drink consumption in adolescence to provide appropriate practices and education.

Development of Deployment Test Equipment Suitable for Single Large Solar Panel (하나의 큰 태양전지판에 적합한 전개시험장치 개발)

  • Moon, Hong-Youl;Park, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.583-591
    • /
    • 2018
  • In this paper, we propose a new deployment test equipment that is characterized for the deployment test of single large solar panel with tape spring hinge. To perform the deployment test on ground, a device that takes gravity compensation into account should be used to create a zero gravity environment similar to that in orbit. We analyzed the advantages and disadvantages of the most commonly used deployment test equipment in the past through simple conceptual design, analysis, and tests to judge whether it is applicable to the deployment of the solar panel to be tested. A dummy frame was proposed to reduce the air drag effect during on-ground test and a self-aligning ball bearing and adjusting screws were applied to the deployment test equipment to solve the alignment problem with the gravity axis. And a horizontal bearing for radial movement applied to compensate for the change of the axis of the tape spring hinge. From these, we solved the problems of the conventional deployment test equipment by developing and verifying the new deployment test equipment characterized for the solar panel to be deployed in this paper.

Muscular Condition Monitoring System Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 근육 상태 감시 시스템)

  • Kim, Heon-Young;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.362-368
    • /
    • 2014
  • Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the musle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

The Effects of Fuel Pellet Eccentricity on Fuel Rod Thermal Performance (핵연료의 편심이 연료봉 열적 성능에 미치는 영향)

  • Suh Young-Keun;Sohn Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 1988
  • This study investigates the effect of fuel pellet eccentricity on fuel rod thermal performance under the steady state condition. The governing equations in the fuel pellet and the cladding region are set up in 2-dimensional cylindrical coordinate (r, $\theta$) and are solved by finite element method. The angular-dependent heat transfer coefficient in the gap region is used in order to account for the asymmetry of gap width. Material propeties are used as a function of temperature and volumetric heat generation as a function of radial position. The results show the increase of maximum local heat flux at the cladding outer surface and the decrease of maximum and average fuel temperatures due to eccentricity. The former is expected to affect the uncertainties in the minimum DNBR calculation. The latter two are expected to reduce the possibility of fuel melting and the fuel stored energy. Also, the fuel pellet eccentricity introduces asymmetry in fuel pellet temperature and movement of the location of maximum fuel pellet temperature.

  • PDF

Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement (뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교)

  • Lee, Chan-Jae;Kim, Gyoung-Do;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.45-52
    • /
    • 2017
  • Drifter is an equipment for observing the characteristics of seawater in the ocean, and it can be used to predict effluent oil diffusion and to observe ocean currents. In this paper, we design models or the prediction of drifter trajectory using machine learning. We propose methods for estimating the trajectory of drifter using support vector regression, radial basis function network, Gaussian process, multilayer perceptron, and recurrent neural network. When the propose mothods were compared with the existing MOHID numerical model, performance was improve on three of the four cases. In particular, LSTM, the best performed method, showed the imporvement by 47.59% Future work will improve the accuracy by weighting using bagging and boosting.

A Survey on Oil Spill and Weather Forecast Using Machine Learning Based on Neural Networks and Statistical Methods (신경망 및 통계 기법 기반의 기계학습을 이용한 유류유출 및 기상 예측 연구 동향)

  • Kim, Gyoung-Do;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.1-8
    • /
    • 2017
  • Accurate forecasting enables to effectively prepare for future phenomenon. Especially, meteorological phenomenon is closely related with human life, and it can prevent from damage such as human life and property through forecasting of weather and disaster that can occur. To respond quickly and effectively to oil spill accidents, it is important to accurately predict the movement of oil spills and the weather in the surrounding waters. In this paper, we selected four representative machine learning techniques: support vector machine, Gaussian process, multilayer perceptron, and radial basis function network that have shown good performance and predictability in the previous studies related to oil spill detection and prediction in meteorology such as wind, rainfall and ozone. we suggest the applicability of oil spill prediction model based on machine learning.

Line Profiles of the Saturn Ring Planetary Nebula

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2011
  • We analyzed the line profiles of the planetary nebula (PN) NGC 7009 secured with the Keck I HIES and BOES's spectral data. The 5 positions were taken over the nebular image, 4 points on the bright rim plus 1 point at the central position. The covered spectral wavelength range was $3250{\AA}-8725{\AA}$ in these observations. We decomposed the lines of HI, HeI, HeII, CII, NIII, [ClIII], [NII], [OII], [OIII], [SII], [SIII], [ClIII], and [ArIII] using the IRAF and StarLink/Dipso. After correcting the Earth's movement and the PN's radial velocities, -48.6 & -48.9 km/s, respectively, for the Keck & BOES, we produced the line profiles in a velocity scale. The zero velocity at each line profile clearly indicates which part of the components is approaching or receding, giving a general information of the kinematical structure. Almost all of the low-to-medium excitation lines, such as [NII], [SII], [O III], and [ArIII], secured at the central position and four positions along the major & minor axes, showed 3 components, double peak + a wide wing component, suggesting the fast outflow structures are present. The overall geometry is a prolate shell which also has a fainter outer shell in the halo zone, but there appears to be some peculiar sub-structures inside the main shell. The high excitation He I, HeII, NIII lines which might be formed close to the inner boundary of the shell show unusual features, completely different from the other lines. The HeII and these high excitation lines may be indicative of a relative recent fast outflow from the central star and the permitted lines such as NIII might be affected by the innermost structure. We discuss a possible presence of a jet-like fast outflow structure in an out-flow axis different from the main axis of the spheroid shell.

  • PDF

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Identification of Vestibular Organ Originated Information on Spatial Memory in Mice (마우스 공간지각과 기억 형성에 미치는 전정 유래 정보의 규명)

  • Han, Gyu Cheol;Kim, Minbum;Kim, Mi Joo
    • Research in Vestibular Science
    • /
    • v.17 no.4
    • /
    • pp.134-141
    • /
    • 2018
  • Objectives: We aimed to study the role of vestibular input on spatial memory performance in mice that had undergone bilateral surgical labyrinthectomy, semicircular canal (SCC) occlusion and 4G hypergravity exposure. Methods: Twelve to 16 weeks old ICR mice (n=30) were used for the experiment. The experimental group divided into 3 groups. One group had undergone bilateral chemical labyrinthectomy, and the other group had performed SCC occlusion surgery, and the last group was exposed to 4G hypergravity for 2 weeks. The movement of mice was recorded using camera in Y maze which had 3 radial arms (35 cm long, 7 cm high, 10 cm wide). We counted the number of visiting arms and analyzed the information of arm selection using program we developed before and after procedure. Results: The bilateral labyrinthectomy group which semicircular canal and otolithic function was impaired showed low behavioral performance and spacial memory. The semicircular canal occlusion with $CO_2$ laser group which only semicircular canal function was impaired showed no difference in performance activity and spatial memory. However the hypergravity exposure group in which only otolithic function impaired showed spatial memory function was affected but the behavioral performance was spared. The impairment of spatial memory recovered after a few days after exposure in hypergravity group. Conclusions: This spatial memory function was affected by bilateral vestibular loss. Space-related information processing seems to be determined by otolithic organ information rather than semicircular canals. Due to otolithic function impairment, spatial learning was impaired after exposure to gravity changes in animals and this impaired performance was compensated after normal gravity exposure.