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The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by
Monte Carlo method using the radial free-space distribution function. This method is based on calculating the
entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the
size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute
molecule behaves as like as a flnid in solid structures. but when the diameter of solute becomes large. a fluid-
to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size
of solute with the more increase of solvent density. The least square fit values of analytical form of the radial
free-space distribution functions of solute molecules are presented for future uses.

Introduction

The chemical potential is one of the most important ther-
modynamic properties since it is a criterion to determine the
direction of spontaneous processes. The entropy is involved
i the chemical potential. however the theoretical estimation
for entropy is not simply made by ensemble average.! The
insertion method.”™ i.e.. calculating the probability of insert-
ing a particle into an equilibrated ensemble. has been the
most practical one that has been used in Monte Carlo (MC)
simulations. The chemical potentials of hard-sphere solutes
solvated in hard-sphere fluid solvents have been calculated™*
by the insertion method. However the insertion method has a
limit when the density of a system is high and the size of sol-
ute is very large. This limit is reached when the chemical
potentials are greater than about 14 47 because in this case
the insertion probability is less than 107 ie. the lowest
probability detected when the usual number of simulation
trial steps are of the order of millions. In the previous work.’
the different method cmploving the radial free-space distei-
bution function (RFSDF) has been used. The method using
RFSDF overcomes (he difficultics® that might arisc when the
density 18 high and the size of solute is very large. This
mcthod has been provided good results for cstimating the
free encrgics of Muid and solid svstems with hard-sphere and
Lennard-Joncs potentials and for calculating the solvation
free cncrgics of different sizes of hard-sphere solutes in
hard-sphere fluids.”™ Tn (his work. thc method is applicd to
the svstem of hard-sphere solules with different sizes sol-
vated in hard-sphere sohids.

Method

In order (o calculate the entropics and chemical potentials
cmploving the RFSDF of hard-sphere solutes solvated 1n
hard-sphere solids. the same method as in ref. [7] has been
uscd cxcept that the solvent structurces arc. in this paper. sol-
ids instcad of flmids. Howcever the method is bricfly

explained again.
The RFSDEF. (1) . is obtained in MC procedure by the fol-
lowing ratio:

L) = Acceptances ol displacement of # 0
Trials ol displaccment of #

{(r) starts from unity at # = 0 and decreases exponentially at
large » The RFSDF is the distribution function of particle-
cavity (including the cavity formed by removing the parti-
cle) relations. In the case of hard-sphere fluid and solid. the
particle and cavity are interchangeable. The excess entropy
over an ideal gas is calculated by comparing the free vol-
umes as follows.
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in which R is the gas constant. ¥7is thc molccular frce vol-
ume. and V7, is that of an idcal gas. The free volume #is
calculated by integrating the RFSDF,
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where #/is a cut-ofl distance to specify the mofecular vol-
ume and this has been formally defined as half of the aver-
age nearcst-ncighbor distance. When the cut-ofY distance has
been defined. the frec volume for an idcal gas is simply
Vi, (4/3)n(#)* . because RFSDF for ideal gas is unity at
all valucs of . The cut-olf distance for hard sphere fluid sol-
vent. . has been defined” ™ as follows:
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where p 1s the number density and o is the diameler of the
hard sphere. In order to caleulate the free volume of solute
that has a different size from the solvent molecule. it 1s not
casy 1o define the cut-ofT distance for the solute molecule
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surrounded by solvent molecules, but the tollowing mean
value has been used’ as an analogy of the case of pressure in
Eq. (7) below,

1 +d
r = U )

where d is the ratio of the diameter of solute to that of sol-
vent and when the sizes of solvent and solute molecules are
the same (d — 1), the cut-off distances become equal to each
other. For the excess chemical potential over an ideal gas,
4 then the entropy term is added to the pressure term,

kT RT R
in which £ is the Boltzmann constant and T is temperature.
The excess internal energy is zero for hard-sphere interac-
tions. The excess pressure of solute is calculated from the
radial distribution function (RDF) as follows.""

R ;/
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In Eq. (7). g is the RDF of solvent molecules around a
solute molecule, and go(( 1+c/)/2) is the value when the sur-
faces of solute and solvent molecules contact.

For the pressure of solvent. py" . the following equation
has been used.

Po ¥V (N-1Y2_ 3 1p™v

w7 om i ®
where & is the number of molecules used in the simulation
and g,,(1) is the value of RDF of solvent-solvent at contact
and the last term is a small correction of the contribution of
solvent-solute interaction in Eq. (7). For the entropy of sol-
vent molecule. the RFSDF for solvent has been used and the
cut-off distance in Eq. (4) has been used. For the entropy of
solute molecule. the RFSDF for solute has been calculated
separately and the cut-oft distance in Eq. (5) has been used.

We have used 108 molecules (107 solvent molecules and
one solute molecule) in MC calculations and have taken an
average of 4 x 10° samplings (trials of move) for solvent
molccules and 2 x 10° samplings for solute molecule after
discarding 6 x 10° configurations starting (rom the initial
face-centered-cubic structure. The densitics ol hard-sphere
solids arc chosen as po~ 1.0, 1.1, and 1.2,

Results and Discussion

In the previous work.” it has been stimulative that the
excess chemical potentials over ideal gases were evaluated
well using the method explained in the above scction for the
hard-sphere fluid solution system, and the good results were
obtained at high densities and for large solutes. Therefore the
results of calculations in this work are also believed reason-
able even though there have been no other comparable pre-
dictions or calculations so far. The RDFs of solvent
molecules around the solute molecule at po— 1.1 for dilfer-
ent sizes of solute are shown in Figure 1. As the size of sol-
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Figure 1. The radial distribution functions ol hard-sphere solvent
molceules around a hard-sphere solute moleeule at pa*=1.1 for
different sizes ot solute denoted on the curves. The dotted lines are
1Tuid phases and the solid lines are solid phases. ois the diameter ol
solvent molecule,

ute increases, the first peaks of RDF increase but the RDFs
of small sizes take on different shapes from those of large
sizes, /.e.. a phase transition occurs. In case of the small sizes
of solute, the solute molecule behaves as like as a fluid even
though the main solvent structure is a solid, and for large
sizes of solute (even smaller than the size of solvent mole-
cule) the solute becomes a solid. For the fluid phase of sol-
ute. the tangents of RDFs at contacting surfaces of solute
and solvent molecules are steep, however the slopes for solid
phase are low. The negative tangent at contacting surfaces
for ¢ — 0.8 is interesting, f.e.. the highest peak is at » — ¢.
This means that the lattice of nearest neighbor of solute is
not disrupted but maintains the original solid structure so
that a big hole as large as the size of solvent molecule is
formed. Theretore the solute molecule is located around the
middle of the hole and thus the contacting probability is even
smaller than the peak at # — ¢. (This can be also seen for
d—0.6.) The RDFs for larger solules than o — 1.0 are not
shown in the figure since the first peaks are very high. The
first peaks can be calculated from the pressure data in Table
I with Eq. (7).

[n Figure 2, the RFSDFs of solute molecule in the cavity
surrounded by solvent molecules at the same density as in
Figure 1 are shown. From Figure 2. one can sce that the
RFSDF of solute becomes off from that of an ideal gas (7.¢.,
unity for all values of r} as the size ol solute becomes large,
and can also examine the phase transition between o — 0.4
and 0.6. The RDFs and RFSDFs for other denistics show
similar trend to those of pc” — 1.1 and therefore they are not
shown. The fluid phase and solid phase are verified by the
curvature shape of RFSDF: 1t has been found'’ that when
-In {(7) is fitted 1o the function -In {(r) — 4r - Br'. the coelfi-
cient B is negative and the function is convex for fluid phase,
and the coelficient B is positive (the function is concave) for
solid phasc. The least square (it values ol the cocflicients 4
and B are listed in Table 1 to describe the RFSDFs for future
uscs. The excess pressures and entropics calculated using
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Table 1. The excess pressures, entropies, and the chemical
potentials of solvent and solute of hard-sphere system and
the coctlicients” 4 and B at diflerent solute-solvent ratios

Solvent Solute

d pa.\' V ~ ‘Ll_
RT R kI RT R kT
pot= 1.0

i’.\' ILL‘.( ’L’.‘\' I,, 5,\'.‘.\‘ X

0.0 933 4606 1399 0.54 033 087 1.730 -0.483
0.1 932 466 1398 09 055 (.51 2.720 -1.348
0.2 932 467 1399 1.62 087 2350 4117 -2.225
0.3 939 467 1406 249 128 377 35674 -2.910
0.4 928 4.67 1395 378 185 3563 8.068 -6.596
0.5 947 469 1416 623 260 883 11.901 -17.527
0.6 936 4.67 14.03 303 1.39 442 4973 0.3516
0.7 924 466 1390 274 1.76 450 5014 9.121
0.8 926 4.67 1393 393 247 640 6.651 16.203
0.9 932 469 1401 699 345 1044 9779 23.980
1.0 926 468 1395 926 475 1401 14.714 69.963
1.1 921 470 1391 14.63 395 2058 22.642 105,630
1.2 948 4.74 1422 2468 7.14 31.81 33.905 1353.76
1.3 9.69 480 1449 37.39 824 4563 48027 168.25
1.4 1031 4.89 1520 4492 8§82 33.74 35525 379.72
1.5 1112 500 16.12 61.36 9.78 71.14 73.594 599.41
1.6 12.35 513 1748 86.73 10.77 97.50 100.06 834.99
pot=1.1
0.0 1234 5358 17.92 0.68 039 1.08 2181 -1.020
1 1243 5359 18.02 1.26 0.68 194 3.554 -2.284
0.2 1240 558 1798 216 08 324 3329 -3.061
(.3 1236 339 1795 296 145 441 6,317 -5.876
0.4 1236 560 1796 4.68 137 625 8466 -18.173
0.5 1239 5359 1798 147 099 246 2904 3.334
6 1236 359 1795 185 .18 3.03 3.408 9.025
0.7 1226 339 1785 2352 1.73 425 4412 17.587
(L8 1230 539 1789 3.69 265 633 6272 36.133
(0.9 1220 339 17.79 6.13 396 10.08 10.121 83.821
1.0 1226 360 1786 1187 3563 1650 19.004 190.66
1.1 1248 564 1812 2588 7.32 3320 36.518 A11.79
1.2 1296 572 18.68 4563 878 3441 63328 673.22
1.3 1423 584 2007 72631035 8298 93.265 25317
1.4 1606 6.01 22.07 116.84 11.54 128.38 (41.90 43339
1.5 1972 624 23962358 13.7 24935 286.51 49870,
poi=12

0.0 18.80 6.84 2364 083 047 (130 2630 -1.012
0.1 1898 6.84 2382 167 084 251 4470 -2.630
0.2 1891 685 2376 239 (20 379 5992 -0.343
0.3 19.01 686 2387 1.13 0.57 170 2474 0.447
0.4 18.88 6.84 2372 130 0.67 197 206l14 2.338
0.5 19.01 685 2386 130 086 236 2862 6.106
0.6 1896 684 2580 1.85 .20 3.05 3362 13.061
0.7 19.0] 685 2586 249 .85 434 4216 30.385
0.8 188] 684 2565 377 294 671 6.099 75.386
0.9 1892 685 2377 691 453 1144 11.193 229.97
1.0 1876 685 2361 1801 685 2486 27977 11135
1.1 1948 693 2641 37.71 933 6724 81.023 46129
1.2 2186 7.153 2901 121.9 116 1333 15936 194254

1.3 27.00 741 34412544 1435 2089 382.68 355350,

“ The coeflicients of the lunction -In {7 = Ar t Bri.
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Figure 2. The radial free-space distribution lunctions ol a hard-
sphere  solute molecule surrounded by hard-sphere  solvent
molecules at pa*=1.1 for different sizes of solute denoted on the
curves. The dotted lines (o = 0.0. 0.2. and 0.4} arc fluid phascs and
the solid lines {¢ 0.6, 0.8. 1.0. 1.2, and 1.4) are solid phases. g is

the diameter ol solvent molecule.
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Figure 3. The excess chemical potentials of hard-sphere solutes
of diflterent sizes solvated in hard-sphere solids al the densities
denoted on the curves. Inlet is the same for small sizes of solute but
the scale of vertical axis tor the chemical potential is expanded.

these two lunctions (RDF with Eq. {7) and RFSDF with Eqs.
(2} and (3), respectively) and the excess chemical potentials
are given in Table 1. The error ranges are not given but not
large {sce ref. |7]) and these can be estimated as the difler-
ence ol the values of solvent and solute [or & — 1. Those val-
ues must be identical and so the differences indicate the
fluctuation range of this calculation. The excess chemical
potentials of solute in Table | are plotted in Figure 3. The
phase transition is clearly seen in Figure 3. The phase transi-
tion occurs at the smaller size of solute as the more increase
of the solvent density. [n other words. the higher density
solid melts by inserting the smaller solute. The chemical
potentials over about 14 47 cannot be obtained by the inser-
tion method and the chemical potentials of solid phase can-
not be caleulated by integrating the pressure {equation of
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statc) since there cxists a phasc transition. However these
difficultics arc oycerecome in this method.

Onc of the main advantages of this method is that the
cntropy and chemical potential are caloulated for the system
of high density solvent and large solute. We can also calcu-
latc the pressure and the entropy separately in onc simula-
tion. And another importance is that the entropy of a single
molccule (solute) can be calculated by tracing the molecule
scparatcly from other (sohent) molccules. When a small
number of molecules arc used in the simulation. the cffect of
the solute sizc on pressure could be larger (sce the solvent
pressurcs in Table 1) than the case with infinitc number of
molccules in the simulation. Therelore. we are studying the
clleet of the number of molecules in simulations.
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