• Title/Summary/Keyword: radial basis interpolation

Search Result 53, Processing Time 0.021 seconds

Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity (유체-구조 연계 해석기법을 이용한 세장비가 큰 비행체 날개의 공탄성 해석)

  • Lee, Ki-Du;Lee, Young-Shin;Lee, Dae-Yearl;Lee, In-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2010
  • For the safety of aircraft and accuracy of bombs, many companies have researched the new concept of adaptive kit to flying-bombs. For the long distance flying, it's normally used deployed high-aspect ratio wing because of limited volume. The probabilities of large elastic deformation and flutter are increased due to decreased stiffness of high-aspect ratio wing. In this paper, computational fluid dynamics and computational structure dynamics interaction methodology are applied for prediction of aerodynamic characteristics. FLUENT and ABAQUS are used to calculate fluid and structural dynamics. Code-bridge was made base on the compactly supported radial basis function to execute interpolation and mapping. There are some differences between rigid body and fluid-structure interaction analysis which are results of aerodynamics characteristics due to structural deformation. Small successive vibration was observed by interaction.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.