Kim, Seong-Joo;Kim, Yong-Taek;Jeon, Hong-Tae;Seo, Jae-Yong;Cho, Hyun-Chan
제어로봇시스템학회:학술대회논문집
/
2001.10a
/
pp.163.1-163
/
2001
In this paper, we use time-frequency localization analysis method to analize the target function and the area of the target space. When we analize the function with the time and frequency axis simultaneously, the characteristic of the function is shown more precisely and the area is covered by a certain block. After we analize the target function in the time-frequency space, we can decide the activation functions and compose the hidden layer of the RBFN by choosing the radial basis function which can represent the characteristic of the target function, RBFN made by this method, designs the good structure proper to the target problem because we can decide the number of hidden node first.
A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.
Journal of Institute of Control, Robotics and Systems
/
v.10
no.2
/
pp.185-191
/
2004
Partial least squares(PLS) is one of multiplicate statistical process methods and has been developed in various algorithms with the characteristics of principal component analysis, dimensionality reduction, and analysis of the relationship between input variables and output variables. But it has been limited somewhat by their dependency on linear mathematics. The algorithm is proposed to classify for the non-linear data using PLS and the residual compensator(RC) based on radial basis function network (RBFN). It compensates for the error of the non-linear data using the RC based on RBFN. The experimental result is given to verify its efficiency compared with those of previous works.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.12
/
pp.679-688
/
2003
In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.10a
/
pp.237-240
/
2005
This paper describer a design expert system which determines the design values of shadow mask using Case-Based Reasoning. In Case-Based Reasoning, it is important to both retrieve similar cases and adapt the cases to meet the design specifications exactly. Especially, the difficulty in automating the adaptation process will prevent the designers from using the design expert systems efficiently and easily. This paper explains knowledge-based design support systems for shadow mask through neural network-based case adaptation. Specifically, we developed 1) representing design knowledge and 2) adaptive case-based reasoning method using RBFN (Radial Basis Function Network).
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.5
/
pp.606-613
/
2003
As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.2
/
pp.96-101
/
2007
Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.5
/
pp.1026-1035
/
1997
In this paper, we studied for phoneme recognition using GPFN and PNN as a kind of RBFN. The structure of RBFN is similar to a feedforward networks but different from choosing of activation function, reference vector and learnign algorithm in a hidden layer. Expecially sigmoid function in PNN is replaced by one category included exponential function. And total calculation performance is high, because PNN performs pattern classification with out learning. In phonemerecognition experiment with 5 vowel and 12 consant, recognition rates of GPFN and PNN as a kind of RBFN reflected statistic characteristic of speech are higher than ones of MLP in case of using test data and quantizied data by VQ and LVQ.
In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.
This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.