• Title/Summary/Keyword: radial basis function network (RBFN)

Search Result 63, Processing Time 0.02 seconds

Initialization of the Radial Basis Function Network Using Localization Method

  • Kim, Seong-Joo;Kim, Yong-Taek;Jeon, Hong-Tae;Seo, Jae-Yong;Cho, Hyun-Chan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.163.1-163
    • /
    • 2001
  • In this paper, we use time-frequency localization analysis method to analize the target function and the area of the target space. When we analize the function with the time and frequency axis simultaneously, the characteristic of the function is shown more precisely and the area is covered by a certain block. After we analize the target function in the time-frequency space, we can decide the activation functions and compose the hidden layer of the RBFN by choosing the radial basis function which can represent the characteristic of the target function, RBFN made by this method, designs the good structure proper to the target problem because we can decide the number of hidden node first.

  • PDF

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Non-linear Data Classification Using Partial Least Square and Residual Compensator (부분 최소 자승법과 잔차 보상기를 이용한 비선형 데이터 분류)

  • 김경훈;김태영;최원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • Partial least squares(PLS) is one of multiplicate statistical process methods and has been developed in various algorithms with the characteristics of principal component analysis, dimensionality reduction, and analysis of the relationship between input variables and output variables. But it has been limited somewhat by their dependency on linear mathematics. The algorithm is proposed to classify for the non-linear data using PLS and the residual compensator(RC) based on radial basis function network (RBFN). It compensates for the error of the non-linear data using the RC based on RBFN. The experimental result is given to verify its efficiency compared with those of previous works.

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

RBFN기법을 활용한 적응적 사례기반 설계

  • Jeong, Sa-Beom;Im, Tae-Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • This paper describer a design expert system which determines the design values of shadow mask using Case-Based Reasoning. In Case-Based Reasoning, it is important to both retrieve similar cases and adapt the cases to meet the design specifications exactly. Especially, the difficulty in automating the adaptation process will prevent the designers from using the design expert systems efficiently and easily. This paper explains knowledge-based design support systems for shadow mask through neural network-based case adaptation. Specifically, we developed 1) representing design knowledge and 2) adaptive case-based reasoning method using RBFN (Radial Basis Function Network).

  • PDF

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

A study on the phoneme recognition using radial basis function network (RBFN을 이용한 음소인식에 관한 연구)

  • 김주성;김수훈;허강인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1026-1035
    • /
    • 1997
  • In this paper, we studied for phoneme recognition using GPFN and PNN as a kind of RBFN. The structure of RBFN is similar to a feedforward networks but different from choosing of activation function, reference vector and learnign algorithm in a hidden layer. Expecially sigmoid function in PNN is replaced by one category included exponential function. And total calculation performance is high, because PNN performs pattern classification with out learning. In phonemerecognition experiment with 5 vowel and 12 consant, recognition rates of GPFN and PNN as a kind of RBFN reflected statistic characteristic of speech are higher than ones of MLP in case of using test data and quantizied data by VQ and LVQ.

  • PDF

Content-Based Image Retrieval using RBF Neural Network (RBF 신경망을 이용한 내용 기반 영상 검색)

  • Lee, Hyoung-K;Yoo, Suk-I
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.

Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers (선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식)

  • Oh Byung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.41-48
    • /
    • 2005
  • This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.

  • PDF