• Title/Summary/Keyword: radar tomography

Search Result 20, Processing Time 0.027 seconds

Non-destructive testing of historical masonry using radar tomography (레이더 토모그래피에 의한 석조문화재 비파괴 검사)

  • Cha, Young-Ho;Kang, Jong-Suk;Choi, Yun-Gyeong;Suh, Jung-Hee;Bae, Byeong-Seon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-156
    • /
    • 2004
  • GPR(Ground Penetrating Radar) was used for imaging the interior of the historical masonry such as stone pagoda in order to provide the basic information of safely inspection. The scope of the imaging was restricted to the foundation part of stone pagoda that transferred the load of the pagoda to the ground. Kirchhoff migration and traveltime tomography was used for imaging the outer stone and the inside of stone pagoda, respectively. From the migrated images, we could measure the thickness and the shape of the boundaries of the outer stone in the foundation part. From the reconstructed tomograms for the physical model, we could get the GPR propagation velocity distribution and exactly find the position of the air in the model and calculate the average velocity with respect to the different filling materials. The properties and the shape of the interior materials of stone pagoda can be basic informations for the safety inspection.

  • PDF

Surface Type Detection and Parameter Estimation in Point Cloud by Using Orthogonal Distance Fitting (최단거리 최소제곱법을 이용한 측정점군으로부터의 곡면 자동탐색)

  • Ahn, Sung-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.

Investigation of Applications Technology for High Resolution SAR Images (고해상도 SAR 영상의 활용기술 동향분석)

  • Yoon, Geun-Won;Koh, Jin-Woo;Lee, Yong-Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2010
  • SAR(Synthetic Aperture Radar) has characteristics well-suited for the measurement of geophysical parameters during day and night in all weather conditions. Recently, SAR data with high resolution acquired by satellites became available to the public. In such data, many features and phenomena of geometric structure of man-made objects and natural environments become observable. In this paper, we discuss main considerations including geometric distortion and coregistration for efficient utilization of high resolution SAR images. And, various advanced technologies in SAR application fields are introduced.

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Archaeological Investigations in Urban Areas through Combined Application of Surface ERT and GPR Techniques

  • Papadopoulos, Nikos;Yi, Myeong-Jong;Sarris, Apostolos;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-118
    • /
    • 2008
  • Among the geophysical methods, Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) comprise the most promising techniques in resolving buried archaeological structures in urban territories. In this work, two case studies which involve an integrated geophysical survey employing the surface three dimensional (3D) ERT and GPR techniques, in order to archaeologically characterize the investigated areas, are presented. Totally more than 4000 square meters were investigated from the test field sites, which are located at the centre of two of the most populated cities of the island of Crete, in Greece. The ERT and the GPR data were collected along dense and parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way applying specific filters to the data in order to enhance their information context. Finally, horizontal depth slices representing the 3D variation of the physical properties were created and the geophysical anomalies were interpreted in terms of possible archaeological structures. The subsequent excavations in one of the sites verified the geophysical results, enhancing the applicability of ERT and GPR techniques in the archaeological exploration of urban territories.

  • PDF

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Verification of grouting effectiveness using geophysical methods in fractured rock (지구물리탐사법을 활용한 절리 발달 암반 지역에서의 그라우팅 효과 판정)

  • Kim, Hyoung-Soo;Baik, Keon-Ha;Kim, Jung-Yul;Kim, Yoo-Sung;Sohn, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.175-198
    • /
    • 2002
  • The techniques using geophysical methods were adopted to obtain quantitative criteria for assessment of grouting effectiveness. Various surface and borehole geophysical surveys including seismic, GPR(ground penetrating radar), resistivity and electromagnetic methods were conducted in fractured rock pilot site before and after grouting execution. However, it is not enough that geophysical data provide criteria for field engineers to confirm the grouting effectiveness in that site even though there is somewhat difference before and after grouting. This study will be continued for the detailed criteria and assessment of grouting effectiveness in other sites.

  • PDF

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.