• Title/Summary/Keyword: radar detector

Search Result 80, Processing Time 0.02 seconds

X, K-Band Patch Array Antenna Having One Port Feeding for Radar Detector (단일 급전부를 갖는 레이다 디텍터용 X, K 밴드 배열 안테나)

  • Joo, Hyun-Mo;Park, Byung-Chul;Kay, Young-Chul;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • In this paper, the X($1{\times}2$, 10.525 GHz) and K($3{\times}6$, 24.15 GHz) bands patch array antenna having single feed line for radar detector applications is proposed. The left side of the proposed array antenna is X band array antenna and the right is K band array antenna. Two array antennas with two stubs located in the front of antennas are fed through one transmission line. If the array antennas which have the different resonance frequency are fed by one transmission line using general T-junction, it interferes each other and the array antenna lost its character. Therefore, to prevent these interferences, two stubs using open and short property of stub are designed. First of all, the performances of array antenna weren't changed when each array antennas were connected with the stub and in the end, it is found out that it was the same when the two array antennas were combined and feed through the one transmission line. The measured gain at X band is 6.47 dBi and measured gain at K band is 13.07 dBi. The experimental results agree well with the simulated ones.

Design and Implementation of Receiver for X-Band Transponder (X-Band 트랜스폰더 수신기의 설계 및 제작)

  • 이원우;조경준;김상희;김종헌;이종철;이병제;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • In this paper, the receiver using Heterodyne type is designed and implemented for a pulse radar at 9.4 GHz. The If amplifier, which occupies a significant size in a Heterodyne receiver for pulse radars, can be removed. Furthermore, by using detector logarithmic video amplifier in baseband, the receiver has a small size and it's characteristic shows a high dynamic range and sensitivity. From the results of measurements, the minimum receiver power of -70 dBm and selectivity of 55 dB are obtained.

Direct Detection Receiver for W-Band Radiometer (W-대역 라디오미터를 위한 Direct Detection 수신기)

  • Moon, Nam Won;Lee, Myung-Whan;Jung, Jin Mi;Kim, Yong Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.426-429
    • /
    • 2017
  • For the W-band remote sensing radiometer, direct detection type radiometer receiver is designed. The receiver should be low noise and high gain of 60 dB unlike communication and radar receiver. The W-band radiometer consist of 4-stage low noise, high gain amplifier, band pass filter and square law detector. The developed direct detection receiver show 4 GHz bandwidth, 56 dB gain, and 4,500 mV/mW voltage sensitivity at integrator output port for -20 dBm input power at 94 GHz.

Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment (불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가)

  • Ryu, Jang-Hee;Jeong, Ji-Chai
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • This paper describes the performance evaluation of NHD(nonhomogeneity detector) for STAP(space-time adaptive processing) airborne radar according to various normalization methods in the nonhomogeneous clutter environment. In practice, the clutter can be characterized as random variation signals, because it sometimes includes signals with very large magnitude like impulsive signal due to the system environment. The received interference signals are composed of homogeneous and nonhomogeneous data. In this situation, NHB is needed to maintain the STAP performance. The normalization using the NHD result is an effective method for removing the nonhomogeneous data. The optimum normalization can be performed by a representative value considered with a characteristic of the given data, so we propose the K-means clustering algorithm. The characteristic of random variation data due to nonhomogeneous clutters can be considered by the number of clusters, and then the representative value for selecting the homogeneous data is determined in the clustering result. In order to reflect a characteristic of the nonstationary interference data, we also investigate the algorithm for a calculation of the proper number of clusters. Through our simulations, we verified that the K-means clustering algorithm has very superior normalization and target detection performances compared with the previous introduced normalization methods.

  • PDF

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.

Realization of Unified Protocol of Multi-functional Controller for Transfer of Vehicle Information on the Roads (차량 검지정보 전송을 위한 다기능 제어기 통합 프로토콜 구현)

  • Ahn, Seung-Yong;Lim, Sung-Kyu;Lee, Seung-Yo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1857-1863
    • /
    • 2012
  • The VDS(Vehicle Detection System) collects and transfers information about traffic situations in real time, therefore it makes the traffic management effective. Recently, the VDSs have provided good stability and accuracy in regard to system reliability and functions but they also have showed problems such as raising costs and consuming times when a new system is installed and/or the environmental requirements for the system are set up. The reason of the problems is that up to now the collection of the data and information about the traffic situations has been achieved by the 1:1 information exchange between the traffic control surveillance center and the each traffic field, between equipments and centers, and among data processing equipments and also centers. The communication systems used in the VDS are generally composed of 1 : 1 connection of the lines because the communication protocols are different in the most of the cases mentioned above. Consequently, this makes the number of communication lines become larger and causes the cost for the whole traffic information systems to increase. In this paper, a development of a controller to unify the communication protocols for the VDS is peformed to solve the problems which were mentioned above. Specially, the controller developed in this paper was applied to a radar vehicle detector and tested to show its usefulness. In addition to that, the developed controller was also designed to include functions to transfer the information about weather conditions on the roads.

Pulse Position Determination using Adaptive Threshold Detector (Adaptive Threshold Detector를 이용한 펄스 위치 계산)

  • Chagn, Jae-won;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • MLAT which is an independent cooperative surveillance system is applied to increase the positon resoultin of secondary survelliance radar. MLAT uses the hyperboic or hyperboloid position mesurement algorithm. Central processing unit of MLAT calculates target position using time difference of arrival (TDOA) which can be solved from time of arrival (TOA) information of each receivers (at least 4 receivers). To increase position resolution of MLAT which use TDOA, TOA which is transfer time from tranmitter to receiver shold be calculated with precision time resolution in receiver. This paper explained the MLAT system briefly and explained ATD which is one of means of calcuating pulse position. ATD is applied to solve the deviation of pulse position due to different amplitude of signals in mulitiple receivers. In this paper, to analysis the performance of ATD, the simulation result of LAS and CDS was compared with the simulation result of basic threshold method.

A Study on Performace Evaluation of ITS Detectors using UAV (UAV를 활용한 ITS검지기 성능평가에 관한 연구)

  • Kang, Tae-Gyung;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • This study focuses on utilizing drones for performance evaluation of ITS detectors and analyzing economic feasibility when performance evaluation is conducted by the traffic management center's own personnel using drones. The study sites were selected from DSRC, video detector, and radar detector locations and drone filming was conducted to obtain travel speed, queue length, and delay time and compare with the detector data. It was shown that drones can be very effectively used to evaluate performance of major ITS detectors such as DSRC and video detectors. In addition, it was analyzed that a drone operated by the traffic management center's own personnel provides very economic solution for ITS detector performance evaluation when compared to consignment by external agencies.

Implementation of Radar Environment Classifier for Adaptive Target Detection (적응표적 탐지용 레이다 환경 분류기 구현)

  • Choi, Beyimg-Gwan;Choi, In-Sik;Kim, Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.157-164
    • /
    • 2005
  • The conventional adaptive detectors can not maintain sufficient detection performance at the presence of non-stationary clutter with unknown characteristics. This is caused by the lack of a priori information about clutter parameters changing over radar coordinates. To solve this problem, it is necessary to use clutter classifiers which have functions, such as the selection of the applied algorithm and its parameters extraction according to clutter conditions. In this paper, we describe the implementation of a clutter environment classifier for adaptive processing. In the environment classifier implemented on Visual C++, the extraction of the parameters and selection of processing algorithm for the adaptive processing unit are possible, and the result of algorithms can be verified at each stage.

Design of a wide dynamic range and high-speed logarithmic amplifier (넓은 동작영역과 고속특성을 갖는 로그 증폭기의 설계)

  • Park, Ki-Won;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.97-103
    • /
    • 2002
  • In this paper, a Logarithmic Video Amplifier(LVA) for radar system or satellite communications is described. The proposed LVA is composed of a input stage, amplification stage, and output stage. As well as a novel series-parallel architecture is proposed for the purpose of wide dynamic range and high speed operation, a newly developed input stage is designed in order to control the voltage level between LVA and detector diode. The LVA is fabricated with a 1.5um 2-poly 2-metal n-well Bi-CMOS technology, and the chip area is 1310 um x 1540 um. From the experimental results, it consumes 190 mW at 10V power supply, the chip has 60 dB dynamic range and 100ns falling time.