• Title/Summary/Keyword: rRNA targeted probe

Search Result 11, Processing Time 0.034 seconds

Rapid and exact molecular identification of the PSP (paralytic shellfish poisoning) producing dinoflagellate genus Alexandrium

  • Kim, Choong-jae;Kim, Sook-Yang;Kim, Kui-Young;Kang, Young-Sil;Kim, Hak-Gyoon;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.132-133
    • /
    • 2003
  • The marine dinoflagellate genus Alexandrium comprise PSP producing A. acatenella, A. angustitabuzatum, A. catenella, A. fundyense, A. minutum, A. ostenfezdii, A. tamiyavanichii and A. tamarense. In monitoring toxic Alexandrium, rapid and exact species identification is one of the significant prerequisite work, however we have suffered confusion of species definition in Alexandrium. To surmount this problem, we chose DNA probing, which has long been used as an alternative for conventional identification methods, primarily relying on morphological approaches using microscope in microbial field. Oligonucleotide DNA probes targeting rRNA or rDNA have been commonly used in diverse studies to detect and enumerate cells concerned as a culture-indetendent powerful tool. Despite of the massive literature on the HAB species containing Alexandrium, application of DNA probing for species identification and detection has been limited to a few documents. DNA probes of toxic A. tamarense, A. catenella and A. tamiyavanichii, and non-toxic A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax were designed from LSU rDNA D1-D2, and applied to whole cell-FISH. Each DNA probes reacted only the targeted Alexandrium cells with very high species-specificity within Alexandrium. The probes could detect each targeted cells obtained from the natural sea water samples without cross-reactivity. Labeling intensity varied in the growth stage, this showed that the contents of probe-targeted cellular rRNA decreased with reduced growth rate. Double probe TAMID2S1 achieved approximately two times higher fluorescent intensity than that with single probe TAMID2. This double probe did not cross-react with any kinds of microorganisms in the natural sea waters. Therefore we can say that in whole-cell FISH procedure this double DNA probe successfully labeled targeted A. tamiyavanichii without cross-reaction with congeners and diverse natural bio-communities.

  • PDF

Bacterial Community Analysis of Lake Soyang in Winter by Using 16S and 23S rRNA-targeted Probes (16S와 23S rRNA에 결합하는 probe를 이용한 겨울철 소양호 세균 군집 구조의 분석)

  • Hong, Sun-Hee;Byeon, Myeong-Seop;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.257-261
    • /
    • 1997
  • To scrutinize the bacterial community composition of Lake Soyang in winter, bacterial numbers belonging to Eubacteria, Proteobacteria and Cytophaga-Flavobacterium group were estimated by using 16S and 23S rRNA targeted oligonucleotide probes. Total bacterial numbers ranged from $0.7{\times}10^6$ to $1.1{\times}10^6cells{\cdot}ml^{-1}$, and vertical profile of total bacteria showed a peak at 5 m depth. The ratio of eubacteria to total bacteria were 34~90% and at 5 m and 10 m depths those were low exhibiting, 39 and 34%, respectively. The percentage of proteobacteria ${\alpha}$-group ranged 10.8~28.7%, ${\beta}$-group 4.5~53.5%, ${\gamma}$-group 4.9~35.5% and Cytophaga-Flavobacterium group 6.1~21.1%. The dominant groups were ${\beta}$-group at 0, 2 and 5 m, ${\gamma}$-group at 10 m, ${\alpha}$-group at 30 m and Cytophaga-Flavobacterium group at 50 m depth. In winter season, Lake Soyang can be divided into three layer, 0~2 m, 5~10 m and 30~50 m, by the bacteria community composition. By this method, new informations about aquatic ecosystem were developed.

  • PDF

Microbial Communities of Activated Sludge in an Anaerobic/Aerobic Sequencing Batch Reactor using Slot Hybridization (Slot Hybridization을 이용한 연속 회분식 반응기내 미생물 분포 조사)

  • Jeon, Che Ok;Shin, Kum-Joo;Lee, Dae Sung;Suh, Pann-Ghill;Park, Jong Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.939-947
    • /
    • 2000
  • Enhanced biological phosphorus removal (EBPR) was performed in an anaerobic/aerobic sequencing batch reactor (SBR). Influent was a synthetic wastewater based on acetate as a carbon source. The sludge age and hydraulic retention time were kept at 10 days and 16 hrs, respectively, Phosphate release during the anaerobic period and phosphate uptake in aerobic period were increased gradually with time. and after about 200 days, steady-state operation could be achieved with complete removal of influent phosphate. Number distribution of microbial community in the sludge performing EBPR was investigated during the steady state operation. 17 rRNA targeted oligonucleotide probes were designed and slot hybridization technique was used to determine the number distribution of each microorganism. In the acetate fed SBR, rRNA belonging to the beta subclass of proteobacteria was the most dominant in total rRNA and rRNA matching to CTE probe was the second, rRNAs of Acinetobacter, Aeromonas and Pseudomonas, which are usually thought as phosphorus accumulating organisms in EBPR processes, constituted less than 10% of total rRNA. From this community analysis, it was inferred that microorganisms belong to the beta subclass of proteobacteia (BET) and CTE such as Rhodocyclus group were important in biological phosphorus removal. Therefore, the role of Acinetobacter, Aeromonas and Pseudomonas in the EBPR might have been overestimated.

  • PDF

Molecular Identification of the Toxic Alexandrium tamiyavanichii (Dinophyceae) by the Whole-cell FISH Method

  • Kim Choong-Jae;Yoshimatsu Sada-Akfi;Sako Yoshihiko;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.175-183
    • /
    • 2004
  • The dinoflagellate Alexandrium tamiyavanichii Balech, a producer of toxins causing paralytic shellfish poisoning (PSP), has recently been considered as one of main organisms responsible for toxication of shellfish in Japan. In this study, A. tamiyavanichii was subjected to a molecular phylogenetic analysis inferred from 28S rDNA D1-D2 sequences and a species-specific LSU rRNA-targeted oligonucleotide DNA probe was designed to identify A. tamiyavanichii using the whole cell-FISH (fluorescence in situ hybridization). The sequences of the 28S rDNA D1-D2 region of A. tamiyavanichii showed no difference from A. cohorticular AF1746l4 (present name A. tamiyavanichii) and formed a distinct clade from the 'tamarensis species complex'. The probe, TAMID2, reacted specifically with A. tamiyavanichii cultured cells, without any cross-reaction with other species belonging to the same genus, including A. tamarense, A. catenella, A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax. In a test of cross-reactivity with a field sample, TAMID2 reacted consistently with only A. tamiyavanichii, indicating that the present protocol involving the TAMID2 probe might be useful for detecting toxic A. tamiyavanichii in a simple and rapid manner.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

Design, Optimization and Verification of 16S rRNA Oligonucleotide Probes of Fluorescence in-situ Hybridization for Targeting Clostridium spp. and Clostridium kluyveri

  • Hu, Lintao;Huang, Jun;Li, Hui;Jin, Yao;Wu, Chongde;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1823-1833
    • /
    • 2018
  • Fluorescence in-situ hybridization (FISH) is a common and popular method used to investigate microbial communities in natural and engineered environments. In this study, two specific 16S rRNA-targeted oligonucleotide probes, CLZ and KCLZ, were designed and verified to quantify the genus Clostridium and the species Clostridium kluyveri. The optimal concentration of hybridization buffer solution for both probes was 30% (w/v). The specificity of the designed probes was high due to the use of pellets from pure reference strains. Feasibility was tested using samples of Chinese liquor from the famed Luzhou manufacturing cellar. The effectiveness of detecting target cells appears to vary widely in different environments. In pit mud, the detection effectiveness of the target cell by probes CLZ and KCLZ was 49.11% and 32.14%, respectively. Quantitative analysis by FISH technique of microbes in pit mud and fermented grains showed consistency with the results detected by qPCR and PCR-DGGE techniques, which showed that the probes CLZ and KCLZ were suitable to analyze the biomass of Clostridium spp. and C. kluyveri during liquor fermentation. Therefore, this study provides a method for quantitative analysis of Clostridium spp. and C. kluyveri and monitoring their community dynamics in microecosystems.

Community structure analysis of nitrifying biofilms by 16S rRNA targeted probe and fluorescence in situ hybridization (FISH)

  • Han, Dong-U;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.282-285
    • /
    • 2001
  • The microbial community structure and in situ spatial distribution of ammonia oxidizing and nitrite oxidizing bacteria in nitrifying biofilm of an upflow biological aerated filter system were investigated. The reactor had been continuously operated under high free ammonia concentration and low DO concentration for nitrite accumulation more than 2 years before the experiment. Fluorescence in situ hybridization

  • PDF

Succession of Bacterial Populations in Cattle Manure Compost as Determined by Fluorescent In Situ Hybridization (우분 퇴비화에서의 Fluorescent In Situ Hybridization법에 의한 세균군집의 천이)

  • Lee, Young-Ok;Jo, Ik-Hwan;Kim, Kil-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.146-153
    • /
    • 2000
  • To elucidate succession of bacterial populations, especially nitrifying bacteria during the composting of cattle manure with apple pomace, fluorescent in situ hybridization(FISH) using rRNA targeted oligonucleotide probes were applied. The density of ammonia-oxidizing bacteria was ranged from $3,3{\times}10^6cells/g$ dw to $13,4{\times}10^6cells/g$ dw with the peak value after 26 composting days whereas that of nitrite-oxidizing bacteria varied between $6.0{\times}10^6cells/g$ dw and $17.2{\times}10^6cells/g$ dw with the peak value after 7 composting days. And the tendency that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria, and the peak-time of their densities were the same as that of data determined by the ratio of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to eubacteria. The peak of ammonia-oxidizing bacteria followed the peak of nitrite-oxidizing bacteria, at the late phase of composting process could be probably caused by the depletion of volatile ammonia of composting materials. Besides these results indicate that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

  • PDF

Analysis of Bacterial Community Structure of Biological Activated Carbon Process in Drinking Water Treatment Plant Using FISH (FISH법을 이용한 정수처리장 내 생물활성탄 공정의 세균군집 구조 분석)

  • Son, Hyeng-Sik;Kim, Mi-A;Jeong, Seong-Yun;Kim, Young-Hun;Son, Hee-Jong;Park, Geun-Tae;Kim, Min-Ju;Ryu, Eun-Yeon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.555-564
    • /
    • 2008
  • The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga-Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were $5.4{\times}10^{10}$ (top), $4.0{\times}10^{10}$ (middle) and $2.8{\times}10^{10}$ cells/ml (bottom). The number of the culturable bacteria was from $1.0{\times}10^7$ to $3.6{\times}10^7$ cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.

Gluconacetobacter persimmonis sp. nov., Isolated from Korean Traditional Persimmon Vinegar

  • Yeo, Soo-Hwan;Lee, Oh-Seuk;Lee, In-Seon;Kim, Hyun-Soo;Yu, Tae-Shick;Jeong, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.276-283
    • /
    • 2004
  • Screening was performed to isolate cellulose-producing microorganisms from the Korean traditional fermented persimmon vinegar. The resulting strain, KJ $145^{T}$, was then taxonomically investigated by phenotypic characterization, particularly chemotaxonomic, and by phylogenetic inference based on a 16S rDNA sequence analysis including other related taxa. Strain KJ $145^{T}$ was found to grow rapidly and form pale white colonies with smooth to rough surfaces on a GYC agar. Strain KJ $145^T$ also produced acetate from ethanol, and was tolerable to 10% ethanol in SM medium. In a static culture, a thick cellulose pellicle was produced, and in GYC broth, the strain grew at temperatures ranging from 28 to $40^\circ{C}$ with an optimum pH of 4.0. The genomic DNA G+C content of strain KJ $145^T$ was 61.9 mol%, and the predominant ubiquinone was Q 10 as the major quinone and Q9 as the minor quinone. The major cellular fatty acids were $C_{16:0}$ and the sum in feature 7 ($C_{18:1}$ w9c, w12t and/or w7c). A 16S rRNA-targeted oligonucleotide probe specific for strain KJ $145^T$was constructed, and the phylogenetic position of the new species was derived from a 16S rDNA-based tree. When comparing the 16S rDNA nucleotide sequences, strain KJ $145^T$ was found to be most closely related to G. hansenii LMG $1527^T$ (99.2%), although KJ $145^T$ was still distinct from G. hansenii LMG $l527^T$ and G. xylinus LMG $1515^T$ in certain phenotypic characteristics. Therefore, on the basis of 16S rDNA sequences and taxonomic characteristics, it is proposed that strain KJ $145^T$ should be placed in the genus Gluconacetobacter as a new species, Gluconacetobacter persimmonis sp. nov., under the type-strain KJ $145^T$ (=KCTC =$10175BP^T$=KCCM=$10354^T$).