• 제목/요약/키워드: rRNA genes

검색결과 794건 처리시간 0.02초

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

Micro RNA 34a and Let-7a Expression in Human Breast Cancers is Associated with Apoptotic Expression Genes

  • Behzad, Mansoori;Ali, Mohammadi;Solmaz, Shirjang;Elham, Baghbani;Behzad, Baradaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1887-1890
    • /
    • 2016
  • Breast cancer is the most common cause of cancer-related death among women in the whole world. MiR- 34a and let-7a are well known tumor suppressors that participate in the regulation of apoptosis, invasion and other cellular functions. In this study, expression of miR-34a, let-7a and apoptosis pathway genes such as Bcl-2, Caspase-3 and P53 were evaluated using quantitative real-time PCR in 45 paired samples of normal margin and tumor tissue collected from breast cancer patient at advanced stage (3-4). MiR-34a, let-7a, caspase-3 and P53 expression are reduced and Bcl-2 expression is increased within tumoral tissues in comparison with normal margin tissues. P53 expression directly or indirectly was correlated with miR-34a, let-7a, Bcl-2 and caspase-3 expression. In This study we found that MiR-34a and let-7a expression are reduced in the tumoral tissues. Down-regulation of these two molecules correlated with expression of genes associated with apoptosis. These results suggest that due to the correlation of miR-34a and let-7a with apoptotic and anti-apoptotic pathways these molecules could participate as regulators in advanced clinical stages of breast cancer and should be considered as markers for diagnosis, prognostic assessment and targeted therapy.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

16S rDNA를 이용한 토양, 작물근계의 세균군집 구조해석 (Analysis of Bacterial Community Structure in the Soil and Root System by 168 rRNA Genes)

  • 김종식;권순우;류진창;양창술
    • 한국토양비료학회지
    • /
    • 제33권4호
    • /
    • pp.266-274
    • /
    • 2000
  • 토양과 작물근계의 유용미생물을 이용하여 작물생산성을 증대하고 병충해의 생물학적 방제를 위해서는 토양-근계의 미생물군집을 분석하고 그 기능을 밝히는 것이 전제가 되어야한다. 그러나 희석평판법으로는 극히 일부분만이 배양된다는 점을 고려할 때, 생존하지만 배양 불가능한 미생물의 군집 분석도 반드시 병행할 필요가 있다. 따라서 본 연구에서는, 고추재배지의 토양, 근권토양, 근면의 세균군집 구조해석을 위해서, 배양을 거치지 않고 각 시료로부터 직접 DNA를 추출하여 PCR증폭, 16S rDNA cloning, sequencing, 계통 해석을 행했다. 그 결과, 토양중에는 근권세균보다 미지의 동정이 되지 않는 세균이 우점하고 있었다. 27 clones 중에서 16 clones이 그램음성세균의 대표격인 Proteobacteria였으며, 방선균 등이 속해있는 고(高) G+C 그램양성세균군은 1 clone이 검출되었다. 그 외는 CFB 군이 2 clones, Verrucomicrobia가 1 clone이었고, Nitrospira가 1 clone이었으며 4 clones은 어느 군에도 속하지 않았다.

  • PDF

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.

생쥐 난자와 착상전 초기배아에서 IGF-1과 IGF-1 수용체 유전자 발현 (Expression of IGF-1 and Its Receptor Genes in the Oocytes and Preimplantation Embryos in Mouse)

  • 김종월;김성례;윤현수;이정헌;채영규;김문규
    • 한국발생생물학회지:발생과생식
    • /
    • 제3권1호
    • /
    • pp.69-74
    • /
    • 1999
  • 인슐린 유사 성장 호르몬 1과 2 (IGF-1 & IGF-2)는 착상 전 초기배아 발생을 조절하는 중요한 요소이다. 생쥐 착상 전 초기배아에서 IGF-1의 역할에 관한 연구를 위해, IGF-1과 IGF-1 수용체의 전사물의 존재 여부를 난자와 착상 전 초기배아에서 조사하였다. 새로이 고안된 IGF-1 primer를 이용하여 난자에서 전사물을 검출하였다. 그리고, PCR 산물을 제한효소인 Msp I으로 절단하여 확인하였다. 이 실험에서 IGF-1과 IGF-1 수용체의 전사물이 난자와 착상 전 초기배아에서 모두 검출됨을 보였다. GV-난자에 다량 존재하는 mRNA는 4- 혹은 8-세포기까지 지속적으로 감소하다가 이후에 다시 증가하는 양상을 보였다. GV-난자에서 IGF-1과 IGF-lR 전사물이 존재한다는 것은 초기배아에 존재하는 전사물이 모계유래 산물임을 암시한다. 또한, 난자와 착상 전 초기배아에 IGF-1과 IGF-1 수용체 전사물이 존재하는 것으로 보아 착상 전 초기배아에서 IGF-1은 자가 분비되어 IGF-1 수용체의 신호전달 경로를 통하여 배아발생에 작용하는 것으로 사료된다.

  • PDF

우리나라 양식 강도다리, Platichthys stellatus에서 분리된 Photobacterium damselae subsp. piscicida의 특성 (Characterization of Photobacterium damselae subsp. piscicida isolated from cultured starry flounder, Platichthys stellatus in Korea)

  • 조영아;한현자;문희은;정승희;박명애;김진우
    • 한국어병학회지
    • /
    • 제26권2호
    • /
    • pp.77-88
    • /
    • 2013
  • 본 연구에서는 2012년 8월, 우리나라 울산 소재의 강도다리 양식장에서 뚜렷한 증상 없이 강도다리 폐사가 발생하여 그 원인을 밝히고자 하였다. 기생충, 세균, 바이러스 검사를 수행하였으며, 내부 장기에서 균이 순수 분리되어 해당 분리균주의 표현형 및 유전적 특성을 분석하였다. 순수 배양된 균체를 확인하여 계대 배양하여 생화학적 성상과 16S rRNA 유전자와 capsular polysaccharide (CPS) 유전자의 염기서열 분석 결과 Photobacterium damselae subsp. piscicida으로 동정되었다. Photobacterium damselae subsp. piscicida와 Photobacterium damselae subsp. damselae는 TCBS agar 배지의 균주 배양 유무, 16S rRNA 및 CPS 유전자 분석을 통해 구분할 수 있었다. 실험 균주는 ofloxacin과 gentamycin에 대해서 감수성을 나타냈으며, 배양 온도에 따른 발육시험 시 $18^{\circ}C$$25^{\circ}C$에서 시험한 다른 균주에 비해 유의적으로 높은 생장율을 나타내었다.

Application of Molecular Methods for the Identification of Acetic Acid Bacteria Isolated from Blueberries and Citrus Fruits

  • Gerard, Liliana Mabel;Davies, Cristina Veronica;Solda, Carina Alejandra;Corrado, Maria Belen;Fernandez, Maria Veronica
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.193-204
    • /
    • 2020
  • Sixteen acetic acid bacteria (AAB) were isolated from blueberries and citric fruits of the Salto Grande region (Concordia, Entre Rios, Argentina) using enrichment techniques and plate isolation. Enrichment broths containing ethanol and acetic acid enabled maximum AAB recovery, since these components promote their growth. Biochemical tests allowed classification of the bacteria at genus level. PCR-RFLP of the 16S rRNA and PCR-RFLP of the 16S-23S rRNA intergenic spacer allowed further classification at the species level; this required treatment of the amplified products of 16S and 16S-23S ITS ribosomal genes with the following restriction enzymes: AluI, RsaI, HaeIII, MspI, TaqI, CfoI, and Tru9I. C7, C8, A80, A160, and A180 isolates were identified as Gluconobacter frateurii; C1, C2, C3, C4, C5, C6, A70, and A210 isolates as Acetobacter pasteurianus; A50 and A140 isolates as Acetobacter tropicalis; and C9 isolate as Acetobacter syzygii. The bacteria identified by 16S rRNA PCR-RFLP were validated by 16S-23S PCR-RFLP; however, the C1 isolate showed different restriction patterns during identification and validation. Partial sequencing of the 16S gene resolved the discrepancy.

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.