• Title/Summary/Keyword: r-alumina

Search Result 129, Processing Time 0.033 seconds

Characteristics of $\gamma$-Alumina Prepared from Rehydrated Amorphous Alumina (수화한 무정형 알루미나로부터 제조된 $\gamma$-Alumina의 특성)

  • Kim, Yun-Seop;Go, Hyeong-Sin;Seo, Jeong-Gwon;Lee, Jeong-Min;Ha, Baek-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.978-985
    • /
    • 2001
  • The amorphous alumina was obtained by flash calcination of Bayer gibbsite[$Al(OH)_3$aluminum trihydroxide]. Rehydration and pore characteristics of $r-A1_2O_3$ prepared from rehydrated amorphous alumina were investigated. Crystal phases of pseudo-boehmite and bayerite were changed when amorphous alumina was hydrated at various conditions such as time, the ratio of water/alumina and pH. Specific surface areas and pore volumes of $r- A1_{2O}_3$ were influenced by the reaction time, water/alumina and PH of rehydration. The total pore volume of $r-A1_{2O}_3$increases with increasing the reaction time and ratio of water/alumina. Especially, the pure pseudo-boehmite of single phase could be prepared, when amorphous alumina was hydrated in the range of pH 6.5-8.0 in water/alumina= 10 at $90^{\circ}C$ for 7hr. The $r-Al_{2O}_3$, obtained by calcination of the prepared pseudo-boehmite at $500^{\circ}C$ for 2hrs, is characterized by the specific surface area of $265m^2$/g, total pore volume of $0.75cm^3$/g.

  • PDF

Development of Ceramic Arc-tube by the PIM Process

  • Rhee, Byung-Ohk;Choi, Seung-Chul;Park, Jeong-Shik;Kim, Byoung-Kyu;Kim, Hyung-Soo;Kim, Sang-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.205-206
    • /
    • 2006
  • A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.

  • PDF

Influence of nano-structured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement (나노구조 알루미나 코팅 처리가 지르코니아 도재와 레진 시멘트 사이 전단 결합강도에 미치는 영향)

  • Kim, Dong-Woon;Lee, Jung-Jin;Kim, Kyoung-A;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.354-363
    • /
    • 2016
  • Purpose: The aim of this study was to investigate whether the application of nano-structured alumina coating to the surface of Y-TZP could enhance the bond strength with resin cement. Materials and methods: A total of 80 zirconia plates were prepared and divided into four groups. : 1) airborne particle abrasion treatment (A) : 2) Rocatec treatment after airborne particle abrasion (R) : 3) nano-structured alumina coating treatment after polishing (PC) and 4) nano-structured alumina coating after airborne particle abrasion (AC). Alumina coating was formed by the hydrolysis of aluminium nitride (AlN) powder and heat treatment at $900^{\circ}C$. Coating patterns were observed with FE-SEM. Resin block was bonded to treated zirconia ceramics using resin cement. The shear bond strengths were measured before and after thermocycling. Results: The FE-SEM images show a dense and uniform nano-structured alumina coating structure, which enhances shear bond strength by increasing micro mechanical interlocking to resin cement. PC and AC groups showed higher shear bond strengths than A and R groups before and after thermocycling. A and R groups displayed significant drops in shear bond strength after thermocycling. However, PC and AC groups did not show any meaningful decreases in shear bond strength after thermocycling. Conclusion: Treatment of Y-TZP ceramics with nano-structured alumina coating could significantly increase their shear bond strength.

Dielectric Properties of Epoxy-Nano Composites for Surface Modified Nano Alumina (표면개질된 나노 알루미나의 에폭시-나노 콤포지트 유전 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.613-619
    • /
    • 2016
  • The aim of this study is to improve of dielectric properties using epoxy/nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2 g). This paper deals with the effects of dielectric properties(${\epsilon}^{\prime}_r$ and $tan{\delta}$) for epoxy/nano alumina contents (1,3 phr) and GDE addition (1,2 g)composites. 5 kinds specimen were prepared with containing epoxy resins, epoxy nano alumina composites. Average particle size of nano used were 30 nm. The nano alumina used were gamma phase particles of spherical shape. The suppression of epoxy chain motion by addition of nano alumina+GDE decreased dielectric loss and relative permittivity magnitude.

R-curve Analysis of Alumina Ceramics (알루미나 세라믹스의 R-curve 분석)

  • 김성진;손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1099-1106
    • /
    • 1994
  • It is suggested that the microstructural toughening process in the initial rising portion of R-curves observed in polycrystalline alumina should be different from the grain bridging mechanism identified in the long crack regime. Microcracking in the advancing crack front seems to be a prerequisite for the development of unbroken bridging ligaments behind the crack tip. In order to test such a proposition, attempts were made to identify experimentally the presence of microcracks in the frontal zone of propagating cracks. In-situ observation is made of crack growth in a miniature double cantilever beam specimen of a average grain size of 10 ${\mu}{\textrm}{m}$ alumina. Presence of a few microcracks was identified in front of crack tip on the propagating crack plane. The R-curves were re-evaluated based on the observation.

  • PDF

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding (멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향)

  • Jung, Da-Hoon;Lim, Da-Eun;Lee, So-Jeong;Ko, Yong-Ho;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.11-15
    • /
    • 2017
  • As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

Control of NOx Emission in a Copper-Alumina Catalytic Filter Reactor (Copper-Alumina 촉매필터 반응기에서의 NOx 제어)

  • 류동길;이상권
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.263-264
    • /
    • 2002
  • 연소시설에서 배연가스중의 NOx 배출을 저감하기 위하여 선택적 촉매 환원법(SCR)과 선택적 무촉매 환원법(SNCR)이 널리 이용되고 있다. 이러한 촉매처리는 Pt와 같은 귀금속이 포함된 촉매 하에서 암모니아를 환원제로 사용하였으나, R와 같은 귀금속의 경우 배연가스내에 함유된 중금속이나 비소(Arsenic), SOx, 비산재(fly ash)등에 의해 쉽게 비활성화(deactivation)되는 단점이 있다(Sumitra R et al., 1995). (중략)

  • PDF