• Title/Summary/Keyword: quorum quenching

Search Result 22, Processing Time 0.027 seconds

The Role of AiiA, a Quorum-Quenching Enzyme from Bacillus thuringiensis, on the Rhizosphere Competence

  • Park, Su-Jin;Park, Sun-Yang;Ryu, Choong-Min;Park, Seung-Hwan;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1518-1521
    • /
    • 2008
  • Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, from Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AHA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL¬-egrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant. These results provide evidence that AHA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Bacterial Quorum Sensing and Quorum Quenching for the Inhibition of Biofilm Formation (박테리아의 Quorum Sensing 및 생물막 형성 억제를 위한 Quorum Quenching 연구 동향)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • Quorum sensing (QS) is a cell-to-cell communication system, which is used by many bacteria to regulate diverse gene expression in response to changes in population density. Bacteria recognize the differences in cell density by sensing the concentration of signal molecules such as N-acyl-homoserine lactones (AHL) and autoinducer-2 (AI-2). In particular, QS plays a key role in biofilm formation, which is a specific bacterial group behavior. Biofilms are dense aggregates of packed microbial communities that grow on surfaces, and are embedded in a self-produced matrix of extracellular polymeric substances (EPS). QS regulates biofilm dispersal as well as the production of EPS. In some bacteria, biofilm formations are regulated by c-di-GMP-mediated signaling as well as QS, thus the two signaling systems are mutually connected. Biofilms are one of the major virulence factors in pathogenic bacteria. In addition, they cause numerous problems in industrial fields, such as the biofouling of pipes, tanks and membrane bioreactors (MBR). Therefore, the interference of QS, referred to as quorum quenching (QQ) has received a great deal of attention. To inhibit biofilm formation, several strategies to disrupt bacterial QS have been reported, and many enzymes which can degrade or modify the signal molecule AHL have been studied. QQ enzymes, such as AHL-lactonase, AHL-acylase, and oxidoreductases may offer great potential for the effective control of biofilm formation and membrane biofouling in the future. This review describes the process of bacterial QS, biofilm formation, and the close relationship between them. Finally, QQ enzymes and their applications for the reduction of biofouling are also discussed.

Design of Quorum Quenching Microbial Vessel to Enhance Cell Viability for Biofouling Control in Membrane Bioreactor

  • Cheong, Won-Suk;Kim, Sang-Ryoung;Oh, Hyun-Suk;Lee, Sang H.;Yeon, Kyung-Min;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.97-105
    • /
    • 2014
  • Quorum quenching (QQ) with a microbial vessel has recently been reported as an economically feasible biofouling control platform in a membrane bioreactor (MBR) for wastewater treatment. In this study, a quorum quenching MBR with a ceramic microbial vessel (CMV) was designed to overcome the extremely low F/M ratio inside a microbial vessel. The CMV was prepared with a monolithic ceramic microporous membrane and AHL-degrading QQ bacteria, Pseudomonas sp. 1A1. The "inner flow feeding mode" was introduced, under which fresh feed was supplied to the MBR only through the center lumen in the CMV. The inner flow feeding mode facilitated nutrient transport to QQ bacteria in the CMV and thus enabled relatively long-term maintenance of cell viability. The quorum quenching effect of the CMV on controlling membrane biofouling in the MBR was more pronounced with the inner flow feeding mode, which was identified by the slower increase in the transmembrane pressure as well as by the visual observation of a biocake that formed on the used membrane surface. In the QQ MBR with the CMV, the concentrations of extracellular polymeric substances were substantially decreased in the biocake on the membrane surface compared with those in the conventional MBR. The CMV also showed its potential with effective biofouling control over long-term operation of the QQ MBR.

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

Quorum quenching for effective control of biofouling in membrane bioreactor: A comprehensive review of approaches, applications, and challenges

  • Kose-Mutlu, Borte;Ergon-Can, Tulay;Koyuncu, Ismail;Lee, Chung-Hak
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.543-558
    • /
    • 2019
  • In comparison to alternative advanced wastewater treatment technologies, the main problem associated with membrane bioreactor (MBR) technology, which has become prominent in recent years, is biofouling. Within these systems, biofouling is typically the result of a biofilm layer resulting from bacterial gathering. One biological system that can be employed to interrupt the process of bacterial gathering is called 'Quorum Quenching (QQ)'. Existing QQ applications can be classified using three main types: 1) bacterial/whole-cell applications, 2) direct enzyme applications, and 3) natural sourced compounds. The most common and widely recognized applications for membrane fouling control during MBR operation are bacterial and direct enzyme applications. The purpose of this review was to identify and assess biofilm formation mechanism and results, the suggestion of the QQ concept and its potential to control biofilm formation, and the means by which these QQ applications can be applied within the MBR and present QQ MBR studies.

Effect of Suction Pressures with Respect to the Operational Modes Using the Quorum Quenching in the Membrane Bioreactor (생물막 반응기내 quorum quenching을 이용한 운전방식에 따른 흡입 압력의 영향)

  • Min Hyeong, Kim;Eeung Mo, Koo;Hyeok, Kim;Hyun-Suk, Oh;Kun Yong, Chung
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • The suction pressure was measured with respect to operational time by the backwashable flat sheet membrane module in membrane bioreactor (MBR). The membrane module having the nominal pore size of 0.2 ㎛ and the effective membrane area of 128cm2 was submerged in MLSS 8,000 mg/L active sludge aqueous solution. The suction pressure was observed with respect to permeation flux and the quorum quenching (QQ) treatment. The effects of FR and SFCO operation methods were compared and analyzed in the experimental groups: vacant bead (VB), BH4 and DKY-1 beads. The suction pressure reduction was the most effective for the permeation flux 40 L/m2 ⋅h with the injection of DKY-1 QQ beads. Also, the suction pressure reduction by the backwashing method was more than twice for using DKY-1 QQ beads.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily

  • Ryu, Du-Hwan;Lee, Sang-Won;Mikolaityte, Viktorija;Kim, Yea-Won;Jeong, Haeyoung;Lee, Sang Jun;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.937-945
    • /
    • 2020
  • N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.