• Title/Summary/Keyword: quinolones

Search Result 111, Processing Time 0.027 seconds

Multiresidue Determination of Quinolones in Porcine, Chicken, and Bovine Muscle Using Liquid Chromatography with Fluorescence Detection

  • Lee, Sang-Hee;Shim, You-Sin;Kim, Hyun-Ju;Shin, Dong-Bin
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.978-984
    • /
    • 2009
  • An analytical method for the simultaneous determination of 9 quinolones (QNs) in porcine, chicken, and bovine muscles was developed and validated using liquid chromatography-fluorescence detector (LC-FLD). The samples were extracted using a liquid-liquid extraction (LLE) process. Chromatographic separation was achieved on a reverse phase $C_8$ column with a gradient elution using a mobile phase of 200 mM ammonium acetate buffer (pH 4.5) and acetonitrile (ACN). The proposed method was validated according to the Food and Drug Administration (FDA) guideline for bioanalytical assay procedures. Recoveries of QNs were 83.1-111.9% with relative standard deviations (RSDs) below 15%. Linearity within a range of 30-500 ${\mu}g/kg$ was obtained with the correlation coefficient ($R^2$) of 0.9967-0.9999. The limits of detection (LOD) were 1-16 ${\mu}g/kg$. These values were lower than the maximum residues limits (MRLs) established by the European Union (EU). The present method was successfully applied to determine QNs in edible muscles.

Antibacterial Activity of Water Soluble Components of Elfvingia applanata Alone and in Combinations with Quinolones

  • Kim, Young-So;Eo, Seong-Kug;Oh, Ki-Wan;Lee, Chong-Kil;Lee, Young-Nam;Han, Seong-Sun
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.11-14
    • /
    • 2001
  • A preparation of water soluble components(EA) was made from carpophores of Elfvingia applanata(Pers.) Karst and its in vitro antibacterial activity on a number of bacterial species was examined by macrobroth dilution assay. Among 16 species of bacteria tested, the most potent antibacterial activity was observed against Staphylococcus epiderrnidis and Proteus vulgaris, of which MICs were 1.25 mg/ml. To investigate the antibacterial effects in combinations of EA with quinolone antibiotics, such as ciprofloxacin, enoxacin, lomefloxacin, norfloxacin, and ofloxacin, the fractional inhibitory concentrations(FICs) and the fractional inhibitory concentration indices(FICIs) for four bacterial strains were determined by macrobroth dilution checkerboard assay. Combinations of EA and quinolones exhibited either additive or indifferent effects of antibacterial activity in most instances. However, both synergistic and antagonistic effects were not observed in any cases.

  • PDF

A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA

  • Lee, Byung-Hwa;Yeo, Ga-Young;Jang, Kyeung-Joo;Lee, Dong-Jin;Noh, Sang-Gyun;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1031-1034
    • /
    • 2009
  • Fluorescence of quinolones including norfloxacin, ciprofloxacin and S- and R-ofloxacin is quenched upon association with single and double-stranded DNA (ss- and ds-DNA). The ratios of fluorescence intensity in the presence of DNA to its absent were plotted with respect to the DNA concentration to construct the Stern-Volmer plot. The slope of the Stern-Volmer plot become larger as the temperature is lowered, ensuring that the fluorescence quenching is static process, i.e., the fluorescence is quenched by formation of the non-fluorescent complex between quinolone and DNA. In the static quenching mechanism, the quenching constant which is equivalent to the slope of the Stern-Volmer plot, is considered as the equilibrium constant for the association of quinolones and DNA. From the temperature-dependent equilibrium constant, ${\Delta}H^0\;and\;{\Delta}S^0$ was obtained using the van’t Hoff relation. In general, association of the quinolone with ds- as well as ss-DNA is energetically favorable (an exothermic) process while the entropy change was unfavorable. Due to the steric effect of the substituents, the effect of the quinolone ring is smaller on the ss-DNA compared to ds-DNA.

Distribution of Quinolones (Ciprofloxacin, Norfloxacin and Oxolinic acid) after Oral Administration in Carp (Cyprinus carpio) (잉어에 있어서 Quinolones (Ciprofloxacin, Norfloxacin 및 Oxolinic acid)의 경구투여에 따른 장기내 분포상)

  • Choi, Min-Soon;Park, Kwan-Ha
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.269-276
    • /
    • 2005
  • The concentrations of quinolones (oxolinic acid; OXA, norlloxacin: NRF & ciprofloxacin: CPF) after oral administration of single doses (20 mg/kg B.W.) were investigated in carp (Cyprinus carpio) kept in freshwater at 20-23$^{\circ}C$. The distribution of the drug was studied after treatment. At points timed, from 1 h to 96 hrs after administration, blood (B), liver (L), kidney (K) and muscle (M) from 5 individuals in each group were collected for analyse with microbiological bioassay method. The peak concentrations were measured at 8 h (L), 12 h (B and K) and 24 h (M) after administration regardless of treated drugs. Considerably high concentrations of CPF (13.8-19.6${\mu}g/m{\ell}$) NRF (11.8-16.9${\mu}g/m{\ell}$) and OXA (10.8-13.9 ${\mu}g/m{\ell}$) were revealed during the 24 h. At the last time point of the experiment (96 h), concentrations of all three quinolones were: OXA, 2.3-6.3 ${\mu}g/m{\ell}$ ; NRF, 3.1-4.5 ${\mu}g/m{\ell}$ ; CPF, 3.0-5.5${\mu}g/m{\ell}$ in samples. The concentrations decreased subsequently, indicating a first rapid redistribution, followed by a slow phase of elimination. The steady state was observed in blood (12-36 h), liver (12-96 h) and muscle (36-96 h) after the initiation of treatment with OXA. Concerning the compartmental concentrations, (L, K. and M/B concentration ratio), the fluctuation of the ratio was founded at different time points, among drugs. For CPF, highest tissue ratios were prolonged in the order of L>K>M (0.65-1.2/0.82-0.93/1.0-1.7) during the experiments. On the other hand, NRF presented L>K>M (0.65-1.3/0.86-1.0) till 24 h, but L>M>K (0.89-1.26) at 36-96 h. OXA showed L>K>M (0.95-2.1) at 1-8 h, M>K>L (0.51-1.0) at 12-36 hand M>L>K (1.0-2.3) at 48-96 h, respectively.

Antibacterial activity of new quinolones against Edwardsiella tarda isolated from eel tanks (양만장에서 분리된 Edwardseilla tarda균에 대한 new quinolone계 약물의 항균작용)

  • Choi, Min-Soon;Kim, Kyong-Ho;Seo, Young-Ho;Choi, Sang-Hoon;Park, Kwan-Ha
    • Journal of fish pathology
    • /
    • v.9 no.2
    • /
    • pp.185-193
    • /
    • 1996
  • Extensive acquirement of drug resistance to traditional antibacterial agents poses a serious problem to eel aquaculturists. To collect the basic information for new drug development in the future, we assessed the in vitro antibacterial efficacy of 14 new quinolones with 75 isolates of Edwardsiella tarda from local aquaculture tanks of Anguilla japonica. Of all tested quinolones under development or marketed for human use, DU-6859 was most potent with its $MIC_{50}$ value of $0.05{\mu}g$/ml in broth microdilution assay. The drugs whose $MIC_{50}$ values ranged from 0.2 to $0.78{\mu}g$/ml were T-3762, Bay-y3118, ciprofloxacin, norfloxacin, ofloxcin and tosufloxacin. The weakest group of drugs, with their $MIC_{50}$ being 1.56-$3.13{\mu}g$/ml, were difloxacin, sparfloxacin, fleroxacin, Q-35, amifloxacin, lomefloxacin and enoxacin. The number of resistant strains, when arbitrarily defined with their MICs of $\geq6.25{\mu}g$/ml, was : 3 to T-3762, 3 to Bay-y3118, 44 to difloxacin, 16 to sparfloxacin, 13 to ciprofloxacin, 19 to fleroxacin, 36 to Q-35). 31 to amifloxacin, 5 to norfloxacin, 13 to ofloxacin, 31 to lomefloxacin, 41 to enoxacin, 12 to tosufloxacin and 0% to DU-6859, respectively. This information can be taken into consideration for the future development of fisheries antibacterial quinolones.

  • PDF

Comparison of the E-Test with Agar Dilution Susceptibility Test by Using Bacteroides fragilis (Bacteroides fragilis의 E-test와 한천 평판 희석법에 의한 항균제 감수성상의 비교)

  • Kim, Hee-Sun;Kim, Sung-Kwang;Cha, Hwa-Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.1
    • /
    • pp.135-143
    • /
    • 1993
  • The susceptibilities of 45 clinical isolates of bacteroides frogilis to cefaclor, ciproflxacin and imipenem were determined by new method, E-test (AB Bidisk, Solna, Sweden) and were compared with those from conventional agar dilution method by using brain heart infusion, Mueller-Hinton and Wilkins Chalgren agar plates. And the susceptibility of 60 clinical isolates of Bacteroides fragilis group (B. fragilis 45 strains, B. distasonis 6 strains, B. ovatus 5 strains, B. thetaiotaomicron 4 strains) to 5 quinolones (ciprofloxacin, enoxacin, norfloxacin, ofloxacin, pefloxacin) were determined by in vitro agar dilution method. Compared with agar dilution MICs for B. fragilis 45 strains, 90.3% of E-test MICs were within ${\pm}$1 dilution of the agar dilutions, and 98.4% were within 2 dilutions. And there were little effect of different medium bases to determine MICs except Mueller-Hinton agar. On Mueller-Hinton agar, B. fragilis showed have or no growth activity. In vitro susceptibility of B. fragjlis group to quinolones, most of the test strains showed resistant patterns to quinolones except ofloxacin and there was little difference of susceptibility patterns between species of B. fragilis group.

  • PDF

Simultaneous Determination of Quinolones in Flatfish and Egg Using liquid Chromatography with Fluorescence Detection (액체크로마토그래피를 이용한 광어 및 계란 중 퀴놀론계의 동시분석법 개발)

  • Lee, Sang-Hee;Shim, You-Shin;Kim, Hyun-Ju;Choi, Yoon-Hee;Shin, Dong-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.4
    • /
    • pp.324-329
    • /
    • 2008
  • An analytical method for the simultaneous determination of nine quinolones (QNs) namely, marbofloxacin, norfloxacin(IS), ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, and flumequine in flatfish and egg was developed and validated using liquid chromatography with fluorescence detection (LC-FD). The samples were extracted using a traditional liquid-liquid extraction process; deproteinization was accomplished by the addition of trichloroacetic acid and acetonitrile (ACN), and defatting was performed with hexane. Chromatographic separation was achieved on a reverse phase C8 column with gradient elution using a mobile phase of 200 mM ammonium acetate buffer (pH 4.5) and ACN. The proposed method was validated according to the CODEX guideline. Mean recoveries of QNs from flatfish and egg were 89.6-106.5% with relative standard deviations (RSDs) below 15% at three different concentrations of 50, 100 and $500{\mu}g/kg$. Linearity was obtained with a correlation coefficient ($r^2$) of 0.9989-1.0000. The LOD for the investigated QNs was $1-16{\mu}g/kg$ depending on flatfish and egg. The present method can be applied simultaneously to determine QNs in muscle of flatfish and egg.