Distribution of Quinolones (Ciprofloxacin, Norfloxacin and Oxolinic acid) after Oral Administration in Carp (Cyprinus carpio)

잉어에 있어서 Quinolones (Ciprofloxacin, Norfloxacin 및 Oxolinic acid)의 경구투여에 따른 장기내 분포상

  • Choi, Min-Soon (Department of Aqualife Medicine, Kunsan National University) ;
  • Park, Kwan-Ha (Department of Aqualife Medicine, Kunsan National University)
  • 최민순 (군산대학교 해양과학대학 수산생명의학과) ;
  • 박관하 (군산대학교 해양과학대학 수산생명의학과)
  • Published : 20051200

Abstract

The concentrations of quinolones (oxolinic acid; OXA, norlloxacin: NRF & ciprofloxacin: CPF) after oral administration of single doses (20 mg/kg B.W.) were investigated in carp (Cyprinus carpio) kept in freshwater at 20-23$^{\circ}C$. The distribution of the drug was studied after treatment. At points timed, from 1 h to 96 hrs after administration, blood (B), liver (L), kidney (K) and muscle (M) from 5 individuals in each group were collected for analyse with microbiological bioassay method. The peak concentrations were measured at 8 h (L), 12 h (B and K) and 24 h (M) after administration regardless of treated drugs. Considerably high concentrations of CPF (13.8-19.6${\mu}g/m{\ell}$) NRF (11.8-16.9${\mu}g/m{\ell}$) and OXA (10.8-13.9 ${\mu}g/m{\ell}$) were revealed during the 24 h. At the last time point of the experiment (96 h), concentrations of all three quinolones were: OXA, 2.3-6.3 ${\mu}g/m{\ell}$ ; NRF, 3.1-4.5 ${\mu}g/m{\ell}$ ; CPF, 3.0-5.5${\mu}g/m{\ell}$ in samples. The concentrations decreased subsequently, indicating a first rapid redistribution, followed by a slow phase of elimination. The steady state was observed in blood (12-36 h), liver (12-96 h) and muscle (36-96 h) after the initiation of treatment with OXA. Concerning the compartmental concentrations, (L, K. and M/B concentration ratio), the fluctuation of the ratio was founded at different time points, among drugs. For CPF, highest tissue ratios were prolonged in the order of L>K>M (0.65-1.2/0.82-0.93/1.0-1.7) during the experiments. On the other hand, NRF presented L>K>M (0.65-1.3/0.86-1.0) till 24 h, but L>M>K (0.89-1.26) at 36-96 h. OXA showed L>K>M (0.95-2.1) at 1-8 h, M>K>L (0.51-1.0) at 12-36 hand M>L>K (1.0-2.3) at 48-96 h, respectively.

본 실험에서 잉어를 대상으로 CPF, NRF 및 OXA등의 약제를 어체당 20 mg/kg 현탁액을 경구투여 후에 1-96 시간 경시적으로 약물의 동태를 조사 하였다. 각 약제별 최고장기농도도달시간은 간장 (8 h), 혈액 (12 h), 신장(12 h) 및 근육 (24 h) 이었다. 각 약제별 최대농도는 CPF (13.8-19.6 ${\mu}g$/$m\ell$), NRF (11.8-15.9 ${\mu}g$/$m\ell$), 및 OXA (10.8-13.9 ${\mu}g$/$m\ell$)순으로 나타났다. 약제농도는 최고치의 도달 이후 빠르게 소실되다가 48-96 h는 완만한 감소를 보였으며, 이때 장기별 약제농도는 근육 (3.3-6.3 ${\mu}g$/$m\ell$)> 간장 (2.5-5.5 ${\mu}g$/$m\ell$)> 신장 (2.3-4.2 ${\mu}g$/$m\ell$) > 혈장 (2.1-3.0 ${\mu}g$/$m\ell$)순으로 나타났다. 한편, OXA의 경우 다른 약제에 비해서 약물의 정체기가 나타났다. 즉 혈중은 12-36 h;, 고농도저류대 (24 hr; 10.9-8.8 ${\mu}g$/$m\ell$), 근육은 36-96 h에 중간농도대 (60 hr; 8.5-5.8 ${\mu}g$/$m\ell$) 및 간장은 12-96 h에 저농도대 (84 hr; 6.8-3.3 ${\mu}g$/$m\ell$)등이 형성되었다.약제의 혈중농도에 대한 각 장기농도비 (간장;L, 신장;K, 및 근육;M / 혈액;B)는 시간대에 따라 차이를 보였다. CPF는 즉 L>K>M (0.65-1.2/0.82-0.93/1.0-1.7)순으로 시간대별로 차이가 없었다. NRF는 시간대별로 1-8 h 및 12-24 h L>K>M (0.65-1.3/0.86-1.0)순이었으나, 36 h 이후 L>M>K (0.89-1.26)순이었다. OXA의 있어서는 1-8 h에는 L>K>M (0.95-2.1), 12-36에는 M>K>L (0.51-1.0) 및 48-96 h에는 M>L>K (1.0-2.3)으로 나타났다.

Keywords

References

  1. Alderman, D. J.: Fisheries chemotheraphy: a review, In 'recent advances in aquaculture'(ed by J. M. Muir and Roberts R. J.) Croom Helm. London, 3: 1-61. 1988
  2. Barnes, A. C., Lewins, T. S, Hastings, T. S. and Arnyes, S. G.: In vitro activities of 4- quinolones against the fish pathogen Aeromonas sul monicida. Antimicrob. Agents Chernother., 34: 1819-1820, 1990 https://doi.org/10.1128/AAC.34.9.1819
  3. Barnes, A. C, Amyes S. G. B., Hasting, T. S. and Lewin C. S.: Fiuroquinolones display rapid bactericidal activity and low mutation frequency against Aeromonas salmonicida. J. Fish Dis., 14: 661-667,1991 https://doi.org/10.1111/j.1365-2761.1991.tb00624.x
  4. Choi, M. S., Kim, K. H., Seo, Y .H., Choi, S. H. and Park, K. H.: Antibacterial activity of new quinolones against Edwardsiella tarda isolated from eel tanks. J. Fish Pathol., 9(2): 185-193, 1996
  5. Ellingen, O. F, Midttun, B., Rogstad, A., Syversten, C. and samuelsen O. B.: Dosage regime experiments with oxolinic acid and flumequine in Atlantic salmon(Salmo salar) held in sea water. Aquaculture, 209: 19-34, 2002 https://doi.org/10.1016/S0044-8486(01)00804-3
  6. Hae, G. J., Park, S. C. and Kim, D. W.: A study on efficacy and safety of quinolone antibacterial (Ciprotloxacin) to bacterial disease in cultured fish, Cyprinus carpio and Oncorhynchus mykiss. Kor. J. Vet. Publ. Health, 22(2): 176-186, 1998
  7. Intorre, L., Ceechini, S., Cognetti- Varriale, A. M., Soldani, G. and Mengozzi, G.: Pharmacokinetics of enrotloxacin in the seabass (Dicentrarchus labraxi. Aquaculture, 182: 49-59, 2000 https://doi.org/10.1016/S0044-8486(99)00253-7
  8. Ishida, N.: Tissue levels of oxolinic acid after oral or intravascular administration to fresh water and seawater rainbow trout. Aquaculture, 102: 9-15,1992 https://doi.org/10.1016/0044-8486(92)90284-R
  9. Kim J. W., lung, S. H., Lee, J. S., Choi, D. L., and Jo, M. R.: Effects of temperature on the pharmacokinetics of norfloxacin in Carp (Cyprinus carpio) and Eel (Anguilla japonica).J. Fish Pathol., 15(2): 49-56, 2002
  10. Lewin, C. S., Allen, R. A. and Amyes, G. G. B.: Potential mechanism of resistance to modern tluoroquinated 4-quinolone. J. Med. microbiol., 31: 153-161, 1990 https://doi.org/10.1099/00222615-31-3-153
  11. Lewin, C. S. and Hastings, T S.: In vitro activities of oxolinic acid, ciprofloxacin and nortloxacin against of the A. saltnonicida. J. Fish Dis., 13: 377-384,1990 https://doi.org/10.1111/j.1365-2761.1990.tb00796.x
  12. Martinsen, B., Myhr, E, Reed, E and Hasten, T: In vitro antimicrobial activity of sarafloxacin against clinical isolates of bacteria pathogenic to fish. J. Aquat. Anim. Health, 3: 235-241, 1991 https://doi.org/10.1577/1548-8667(1991)003<0235:IVAAOS>2.3.CO;2
  13. Martinsen, B. Horsberg, T E and Burke, M.: Multiple-dose pharmacokinetic and depletion studies of saratloxsacin in Atlantic salmon (Salmo salar L). J. Fish Dis., 17: 111-121. 1994 https://doi.org/10.1111/j.1365-2761.1994.tb00204.x
  14. Nouws, J. F. M., Grondel, J. L., Schutte, A. R. and Laurenseri, J.: Pharmacokinetics of ciprotloxacin in carp, African carp and R. trout. Vet. Quart., 10(3): 211-216, 1998
  15. Rogstad, A., Ellingsen, O. F. and Syversten, C.: Pharmacokinetics and bioavailability of flumequin and oxolinic acid after various routes of administration to Atlantic salmon in seawater. Aquaculture, 110: 207-220, 1993 https://doi.org/10.1016/0044-8486(93)90369-A
  16. Rocca, G. D., Salvo, A. D., Malvis, J. and Sello, M.: The distribution of enrotloxacin in seabream after single intravenous injection or from medicated feed administration. Aquaculture, 232: 53-62, 2004 https://doi.org/10.1016/S0044-8486(03)00455-1
  17. Samuelsen, O. B., Ervik, A., Pursell, L. and Smith, P.: Single dose pharmacokinetic study of oxolinic acid and vetoquinol, an oxolinic acid ester, In Atlantic salmon (Salmo salarv held in seawater and in vitro antibacterial activity againstA. salmonicida. Aquaculture, 18: 213-224, 2000
  18. Smith, J. T. and Lewin, C. S.: Chemistry and mechanicals of action of the quinolones antibacterial. In 'The Quinolones'(ed by Andriole, V. T). Academic press, London, pp. 23-82, 1988
  19. Stamm, J. M.: In vitro resistance by fish pathogens to aquacultural antibacterials, including the quinolones difloxacin (A-56619) and saratloxacin (A-56620). J. Aquat. Anim, Health, 1: 135-141,1989 https://doi.org/10.1577/1548-8667(1989)001<0135:IVRBFP>2.3.CO;2
  20. Stoffregen, D. A., Wooster, G. A., Bustos, P. S., Bowser, P. R. and Babish, J. G.: Multiple route and dose pharmacokinetics of enrofloxacin in juvenile Atlantic salmon. J. Vet. Pharmacol. Ther., 20: 111-123, 1997 https://doi.org/10.1046/j.1365-2885.1997.81531.x
  21. Treves, B. K. M.: Applied Fish Pharmacology. Kluwer academic pub., pp. 56-63,2000
  22. Waterworth, P. M.: Quantitative methods for bacterial sensitivity testing. In review, D. S., Philips, I., Williams, J. D. Wise, R. (eds), Laboratory methods in antimicrobial chemotherapy. Livinstone, Edinburgh, pp. 31-40, 1978
  23. Wolfson, J. S. and Hooper, D. C.: The tluroquinolones: Structures, mechanism of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother., 28(4): 1647-1650,1985
  24. 정승희, 지보영, 이주석, 도정환, 최동림, 김진우, 박미선: 어류질병 진단 및 치료대책, 해수부, pp, 110-118. 2000