• Title/Summary/Keyword: quinacridone

Search Result 5, Processing Time 0.029 seconds

Photoactivity of SnO2-Doped TiO2 Powder Sensitized with Quinacridone (Quinacridone을 첨가시킨 SnO2가 도핑된 TiO2 분말의 광촉매 특성)

  • Jung, Miewon;Kwak, Yunjung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.650-653
    • /
    • 2007
  • $SnO_2$-doped $TiO_2$ powder was obtained from tin (IV) bis(acetylacetonate) dichloride and titanium diisopropoxide bis(acetylacetonate) with quinacridone as the dye sensitizer molecule. The structural changes of the reaction mixture were monitored by fourier transform infrared (FT-IR) spectroscopy. The morphology and microstructure of gel powder were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). The photocatalytic activity of these powders with the anatase structure was investigated by using indigo carmine solution as a test dye

Synthesis of Novel Quinacridone Dyes and Their Photovoltaic Performances in Organic Dye-sensitized Solar Cells

  • SaKong, Chun;Kim, Se-Hun;Yuk, Sim-Bum;Kim, Jeong-Yun;Park, Se-Woong;Ko, Min-Jae;Kim, Jae-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2553-2559
    • /
    • 2011
  • Two novel quinacridone (QNC) dyes with thiophene or benzene-conjugated bridge and cyanoacrylic acid acceptor were first designed and synthesized for use in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of these dyes were investigated. Under simulated AM 1.5G irradiation conditions, the solar cell based on the quinacridone dye containing thiophene as a bridge unit had a short-circuit photocurrent density of 8.51 $mA{\cdot}cm^{-2}$, an open-circuit voltage of 643.6 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.86%.

Preparation and Properties of Organic Electroluminescent Devices Using Low Molecule Compounds (저분자 화합물을 이용한 유기 전계발광소자의 제작과 특성 연구)

  • 노준서;조중연;유정희;장영철;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • The multi-layered OELDs(organic electroluminescent devices) were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The $Alq_3$ (tris-(8-hydroxyquinoline)aluminum) low molecule compound was used as the light emission layer. TPD(triphenyl-diamine) and $\alpha-NPD$ were used as the hole transport layer. CuPc (Copper phthalocyanine) was also used as the hole injection layers. In addition, QD2 (quinacridone2) organic material with $10\AA$ thickness was deposited in the $Alq_3$ emission layer to improve the luminance efficiency. The threshold voltage was about 7V for all devices. The luminance and efficiency of devices was improved by substitution the $\alpha-NPD$ for TPD as the hole as the hole transport layer. The luminance efficiency of the OELD sample with QD2 thin film in the $Alq_3$ emission layer was found to be 1.55 lm/W, which is about 8 times larger value compared to the sample without QD2 thin layer.

  • PDF

Synthesis, application of thermally stable red dyes for LCD colorfilter ; Influence of dye structures on the aggregation property in the film state

  • Sakong, Chun;Kim, Young-Do;Kim, Jae-Pil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.847-850
    • /
    • 2008
  • Three thermally stable red dyes of azo, quinacridone and perylene derivatives were synthesized and dye-based color filters were manufactured for liquid crystal display. Aggregation behavior of the dyes and their spectral property in film state were investigated by concentration dependent spectroscopy and field emission scanning electron microscopy (FE-SEM). These dyes have remarkable difference on their aggregation behavior in film state. Such difference of aggregation behavior affects the spectral property of the film, and it can cause decreasing the transmittance of dye-based color filters.

  • PDF

Improving electroluminescent efficiency of organic light emitting diodes by co-doping (Co-doping을 이용한 OLED의 발광 효율 향상)

  • Park, Young-Wook;Kim, Young-Min;Choi, Jin-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF