효율적인 동영상 검색 방법은 많은 양의 동영상 데이터를 관리하는 디지털 비디오 라이브러리 시스템에서 필수적으로 요구되는 기능이다. 본 논문에서는 샷 단위 동영상을 문맥, 전경, 배경, 오디오로 나누어 비교하여 질의 동영상과 비슷한 동영상을 찾아내는 예제 기반 동영상 검색 알고리즘을 제안하였고, 제안한 알고리즘에 따라서 저작 및 검색도구를 구현하였다. 샷간의 관계 정보 즉, 문맥을 고려한다는 것은 인접한 샷들 간의 오디오, 움직임 정보들과 같은 저급 수준 내용 정보 간에 변화 패턴을 비교한다는 것이다. 두 번째 비교 요소인 전경은 움직이는 객체들의 집합을 의미하고, 세 번째 비교 요소인 배경은 전경을 제외한 나머지 비디오 정보를 의미한다. 이러한 비교 방법은 동영상 제작 과정에 근거한 것으로써 사용자로 하여금 직관적인 비교를 할 수 있게 한다. 또한 질의 신을 직접 구성할 수 있게 하였고, 각각의 비교요소에 가중치를 부여할 수 있도록 하여서 사용자의 검색의도를 자유롭게 반영할 수 있도록 하였다. 본 논문에서는 동영상이 가지고 있는 의미 정보를 검색에 완전히 반영하지는 못하지만, 문맥을 통해서 부분적인 의미 정보를 사용할 수 있도록 하였으며, 질의 신 구성과 직관적인 비교 요소를 사용함으로써 사용자의 검색 의도를 최대한 반영하고자 하였다.
본 논문에서는 사용자가 질의를 원하는 물체 영역을 선택하면 유사 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상은 색상성분과 그레이성분으로 나누어져 웨블릿 변환되고 색상성분에서는 컬러 오토코릴로그램과 분산으로 색상특성을 추출한다. 그리고 그레이성분에서는 오토코릴로그램과 GLCM을 통해 질감특성을 추출한다. 이렇게 구한 2개 성분에서의 특성들을 이용하여 데이터베이스내의 영상들과 각각 유사도를 비교하여 검색하게 된다. 이때 각 유사도에 가중치를 적용하였다. 한 가지 성분보다 두 가지 성분에서 특성을 구하여 각각의 단점을 보완하였고 실험 결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다 또한 가중치를 적용함으로써 검색 효율이 개선되었다. 그리고 데이터베이스내 영상들의 여러 특성을 특성 라이브러리내에 자동 색인화 시킴으로써 고속의 영상 검색이 가능하였다.
내용기반 이미지검색이란 색상, 형태 및 질감 등의 저-수준 특징정보를 이용하여 이미지 데이터베이스를 구축하고, 이미지에 대한 검색요구가 발생했을 때 사용자가 찾고자 하는 이미지와 유사한 이미지를 제공하는 시스템으로 정의된다. 데이터베이스의 구축시간과 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간을 나누어 고려할 때, 사용자는 반응시간에 보다 관심을 갖는 것이 일반적이다. 내용기반 이미지검색 시스템에서 질의이미지와 데이터베이스 내의 이미지와의 유사도 비교시간이 전체 반응시간 중에서 가장 큰 비중을 차지한다. 본 논문에서는 이러한 유사도 비교시간을 최소화하기 위해 특징벡터의 클러스터링 기법을 적용한 2단계 탐색방법을 제안한다. 실험 결과를 통해 제안하는 2단계 탐색방법으로 대용량의 이미지 데이터베이스 내의 전체 이미지에 대한 원 특징정보와 비교하는 전체검색에 비해, 동일한 적합성을 보장하면서 평균적으로 2배 이상의 검색속도 향상을 확인하였으며, 이미지의 수가 더욱 커질수록 효과적임을 입증하였다.
이 논문은 색상과 위치정보를 이용한 새로운 내용기반 영상검색 알고리즘을 제안한다. 이를 위해서. 질의가 주어졌을 경우, 데이타베이스의 검색공간을 줄일 목적으로 두 가지 종류의 색인 키(Key)를 제시하는데 하나는 영상의 고유한 색상 구성적 특성을 나타내는 주요 색상세트(MCS, Main Colors' Set)이고 다른 하나는 주요 색상마다의 분포 및 위치적 특성을 나타내는 분포 블록기호(DBS, Distribution Block Signature)이다. 이 두 가지 필터(Filter)를 연속적으로 적용하면 영상 데이터베이스로부터 잠재성이 높은 유사 후보 영상만을 걸러내게 된다. 이어서 보다 높은 검색성능을 얻기 위해 새롭게 제안한 쿼드모델 (Quad Modeling)과 유사도 피드백 메커니즘을 이용한다. 이 방법은 색상과 위치정보에 대한 가중치를 역동적으로 조절함으로써 검색성능을 향상시킨다. 실험을 통해서 제안된 알고리즘이 성공적으로 영상검색에 사용될 수 있음을 보인다.
Digital image and video libraries require new algorithms for the automated extraction and indexing of salient image features. Eigen values of an image provide one important cue for the discrimination of image content. In this paper we propose a new approach for automated content extraction that allows efficient database searching using eigen values. The algorithm automatically extracts eigen values from the image matrix represented by the covariance matrix for the image. We demonstrate that the eigen values representing shape information and the skewness of its distribution representing complexity provide good performance in image query response time while providing effective discriminability. We present the eigen value extraction and indexing techniques. We test the proposed algorithm of searching by eigen value and its skewness on a database of 100 images.
In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.
This paper proposes a novel method to detect unauthorized copies of digital images. This copy detection scheme can be used as either an alternative approach or a complementary approach to watermarking. A test image is reduced to 8$\times$8 sub-image by intensity averaging, and the AC coefficients of its discrete cosine transform (DCT) are used to compute distance from those generated from the query image, of which a user wants to find copies. Copies may be Processed to avoid copy detection or enhance image quality. We show ordinal measure of DCT coefficients, which is based on relative ordering of AC magnitude values and using distance metrics between two rank permutations, are robust to various modifications of the original image. The optimal threshold selection scheme using the maximum a posteriori (MAP) criterion is also addressed.
To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.
Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.
The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.