• 제목/요약/키워드: query image

검색결과 300건 처리시간 0.026초

문맥을 고려한 예제 기반 동영상 검색 알고리즘 (Content Based Video Retrieval by Example Considering Context)

  • 박주현;낭종호;김경수;하명환;정병희
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권12호
    • /
    • pp.756-771
    • /
    • 2003
  • 효율적인 동영상 검색 방법은 많은 양의 동영상 데이터를 관리하는 디지털 비디오 라이브러리 시스템에서 필수적으로 요구되는 기능이다. 본 논문에서는 샷 단위 동영상을 문맥, 전경, 배경, 오디오로 나누어 비교하여 질의 동영상과 비슷한 동영상을 찾아내는 예제 기반 동영상 검색 알고리즘을 제안하였고, 제안한 알고리즘에 따라서 저작 및 검색도구를 구현하였다. 샷간의 관계 정보 즉, 문맥을 고려한다는 것은 인접한 샷들 간의 오디오, 움직임 정보들과 같은 저급 수준 내용 정보 간에 변화 패턴을 비교한다는 것이다. 두 번째 비교 요소인 전경은 움직이는 객체들의 집합을 의미하고, 세 번째 비교 요소인 배경은 전경을 제외한 나머지 비디오 정보를 의미한다. 이러한 비교 방법은 동영상 제작 과정에 근거한 것으로써 사용자로 하여금 직관적인 비교를 할 수 있게 한다. 또한 질의 신을 직접 구성할 수 있게 하였고, 각각의 비교요소에 가중치를 부여할 수 있도록 하여서 사용자의 검색의도를 자유롭게 반영할 수 있도록 하였다. 본 논문에서는 동영상이 가지고 있는 의미 정보를 검색에 완전히 반영하지는 못하지만, 문맥을 통해서 부분적인 의미 정보를 사용할 수 있도록 하였으며, 질의 신 구성과 직관적인 비교 요소를 사용함으로써 사용자의 검색 의도를 최대한 반영하고자 하였다.

웨블릿 변환기법을 이용한 내용기반 컬러영상 검색시스템 구현 (Implementation of Content Based Color Image Retrieval System using Wavelet Transformation Method)

  • 송석진;이희봉;김효성;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.20-27
    • /
    • 2003
  • 본 논문에서는 사용자가 질의를 원하는 물체 영역을 선택하면 유사 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상은 색상성분과 그레이성분으로 나누어져 웨블릿 변환되고 색상성분에서는 컬러 오토코릴로그램과 분산으로 색상특성을 추출한다. 그리고 그레이성분에서는 오토코릴로그램과 GLCM을 통해 질감특성을 추출한다. 이렇게 구한 2개 성분에서의 특성들을 이용하여 데이터베이스내의 영상들과 각각 유사도를 비교하여 검색하게 된다. 이때 각 유사도에 가중치를 적용하였다. 한 가지 성분보다 두 가지 성분에서 특성을 구하여 각각의 단점을 보완하였고 실험 결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다 또한 가중치를 적용함으로써 검색 효율이 개선되었다. 그리고 데이터베이스내 영상들의 여러 특성을 특성 라이브러리내에 자동 색인화 시킴으로써 고속의 영상 검색이 가능하였다.

특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템 (Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector)

  • 조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제40권3호
    • /
    • pp.171-180
    • /
    • 2003
  • 내용기반 이미지검색이란 색상, 형태 및 질감 등의 저-수준 특징정보를 이용하여 이미지 데이터베이스를 구축하고, 이미지에 대한 검색요구가 발생했을 때 사용자가 찾고자 하는 이미지와 유사한 이미지를 제공하는 시스템으로 정의된다. 데이터베이스의 구축시간과 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간을 나누어 고려할 때, 사용자는 반응시간에 보다 관심을 갖는 것이 일반적이다. 내용기반 이미지검색 시스템에서 질의이미지와 데이터베이스 내의 이미지와의 유사도 비교시간이 전체 반응시간 중에서 가장 큰 비중을 차지한다. 본 논문에서는 이러한 유사도 비교시간을 최소화하기 위해 특징벡터의 클러스터링 기법을 적용한 2단계 탐색방법을 제안한다. 실험 결과를 통해 제안하는 2단계 탐색방법으로 대용량의 이미지 데이터베이스 내의 전체 이미지에 대한 원 특징정보와 비교하는 전체검색에 비해, 동일한 적합성을 보장하면서 평균적으로 2배 이상의 검색속도 향상을 확인하였으며, 이미지의 수가 더욱 커질수록 효과적임을 입증하였다.

주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색 (Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback)

  • 박한수;유헌우;장동식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.126-136
    • /
    • 2004
  • 이 논문은 색상과 위치정보를 이용한 새로운 내용기반 영상검색 알고리즘을 제안한다. 이를 위해서. 질의가 주어졌을 경우, 데이타베이스의 검색공간을 줄일 목적으로 두 가지 종류의 색인 키(Key)를 제시하는데 하나는 영상의 고유한 색상 구성적 특성을 나타내는 주요 색상세트(MCS, Main Colors' Set)이고 다른 하나는 주요 색상마다의 분포 및 위치적 특성을 나타내는 분포 블록기호(DBS, Distribution Block Signature)이다. 이 두 가지 필터(Filter)를 연속적으로 적용하면 영상 데이터베이스로부터 잠재성이 높은 유사 후보 영상만을 걸러내게 된다. 이어서 보다 높은 검색성능을 얻기 위해 새롭게 제안한 쿼드모델 (Quad Modeling)과 유사도 피드백 메커니즘을 이용한다. 이 방법은 색상과 위치정보에 대한 가중치를 역동적으로 조절함으로써 검색성능을 향상시킨다. 실험을 통해서 제안된 알고리즘이 성공적으로 영상검색에 사용될 수 있음을 보인다.

Eigen Value 기반의 영상검색 기법 (Eigen Value Based Image Retrieval Technique)

  • 김진용;소운영;정동석
    • 정보기술과데이타베이스저널
    • /
    • 제6권2호
    • /
    • pp.19-28
    • /
    • 1999
  • Digital image and video libraries require new algorithms for the automated extraction and indexing of salient image features. Eigen values of an image provide one important cue for the discrimination of image content. In this paper we propose a new approach for automated content extraction that allows efficient database searching using eigen values. The algorithm automatically extracts eigen values from the image matrix represented by the covariance matrix for the image. We demonstrate that the eigen values representing shape information and the skewness of its distribution representing complexity provide good performance in image query response time while providing effective discriminability. We present the eigen value extraction and indexing techniques. We test the proposed algorithm of searching by eigen value and its skewness on a database of 100 images.

  • PDF

개선된 chain code와 HMM을 이용한 내용기반 영상검색 (Content-based Image Retrieval using an Improved Chain Code and Hidden Markov Model)

  • 조완현;이승희;박순영;박종현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2000
  • In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.

  • PDF

Ordinal Measure of DCT Coefficients for Image Correspondence and Its Application to Copy Detection

  • Changick Kim
    • 방송공학회논문지
    • /
    • 제7권2호
    • /
    • pp.168-180
    • /
    • 2002
  • This paper proposes a novel method to detect unauthorized copies of digital images. This copy detection scheme can be used as either an alternative approach or a complementary approach to watermarking. A test image is reduced to 8$\times$8 sub-image by intensity averaging, and the AC coefficients of its discrete cosine transform (DCT) are used to compute distance from those generated from the query image, of which a user wants to find copies. Copies may be Processed to avoid copy detection or enhance image quality. We show ordinal measure of DCT coefficients, which is based on relative ordering of AC magnitude values and using distance metrics between two rank permutations, are robust to various modifications of the original image. The optimal threshold selection scheme using the maximum a posteriori (MAP) criterion is also addressed.

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • 제8권2호
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제1권1호
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval Projection Maps

  • 김원일
    • 정보통신설비학회논문지
    • /
    • 제9권2호
    • /
    • pp.73-79
    • /
    • 2010
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

  • PDF