• Title/Summary/Keyword: query Expansion

Search Result 131, Processing Time 0.024 seconds

The Pragmatics of Automatic Query Expansion Based on Search Results of Natural Language Queries (탐색결과에 근거한 자연어질의 자동확장 및 응용에 관한 연구 고찰)

  • 노정순
    • Journal of the Korean Society for information Management
    • /
    • v.16 no.2
    • /
    • pp.49-80
    • /
    • 1999
  • This study analyses the researches on automatic query modification, expansion and combination based on search results of natural language queries and gives a conceptual framework for the factors affecting the effectiveness of the relevance feedback. The operating and experimental systems based on the vector space model, the binary independence model and the inference net model are reviewed, and it is found that the effectiveness of query expansion is affected by conceptual models, algorithms for weighting terms and documents and selecting query terms to be added, size of relevant and non-relevant documents to be used and size of terms to be added in relevance feedback, query length, type and size of DBs, etc.

  • PDF

Incorporating Deep Median Networks for Arabic Document Retrieval Using Word Embeddings-Based Query Expansion

  • Yasir Hadi Farhan;Mohanaad Shakir;Mustafa Abd Tareq;Boumedyen Shannaq
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.3
    • /
    • pp.36-48
    • /
    • 2024
  • The information retrieval (IR) process often encounters a challenge known as query-document vocabulary mismatch, where user queries do not align with document content, impacting search effectiveness. Automatic query expansion (AQE) techniques aim to mitigate this issue by augmenting user queries with related terms or synonyms. Word embedding, particularly Word2Vec, has gained prominence for AQE due to its ability to represent words as real-number vectors. However, AQE methods typically expand individual query terms, potentially leading to query drift if not carefully selected. To address this, researchers propose utilizing median vectors derived from deep median networks to capture query similarity comprehensively. Integrating median vectors into candidate term generation and combining them with the BM25 probabilistic model and two IR strategies (EQE1 and V2Q) yields promising results, outperforming baseline methods in experimental settings.

Query Expansion System for Semantic Contents Retrieval (시맨틱 콘텐츠 검색을 위한 질의 확장 시스템)

  • Lee, Moo-Hun;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.307-312
    • /
    • 2012
  • For semantic search methods to provide more accurate results than keyword-based search in a logical representation that uses a knowledge base are being studied. Than most of the user to use formal query language and schema used to interpret the meaning of a user keyword. In this paper, we propose to expand the user query for semantic search. In the proposed system, user query expansion component and a component to adjust the results to interpret user queries to take advantage of the knowledge base associated with a search term. Finally, a user query semantic interpretation, the proposed scheme to verify the experimental results of the prototype system is described.

Query Term Expansion and Reweighting using Term-Distribution Similarity (용어 분포 유사도를 이용한 질의 용어 확장 및 가중치 재산정)

  • Kim, Ju-Youn;Kim, Byeong-Man;Park, Hyuk-Ro
    • Journal of KIISE:Databases
    • /
    • v.27 no.1
    • /
    • pp.90-100
    • /
    • 2000
  • We propose, in this paper, a new query expansion technique with term reweighting. All terms in the documents feedbacked from a user, excluding stopwords, are selected as candidate terms for query expansion and reweighted using the relevance degree which is calculated from the term-distribution similarity between a candidate term and each term in initial query. The term-distribution similarity of two terms is a measure on how similar their occurrence distributions in relevant documents are. The terms to be actually expanded are selected using the relevance degree and combined with initial query to construct an expanded query. We use KT-set 1.0 and KT-set 2.0 to evaluate performance and compare our method with two methods, one with no relevance feedback and the other with Dec-Hi method which is similar to our method. based on recall and precision.

  • PDF

A Study on Dynamic Query Expansion Using Web Mining in Information Retrieval (정보검색에서 웹마이닝을 이용한 동적인 질의확장에 관한 연구)

  • 황인수
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.227-237
    • /
    • 2004
  • While the WWW offers an incredibly rich base of information, organized as a hypertext, it does not provide a uniform and efficient way to retrieve specific information. When one tries to find information entering several query terms into a search engine, the highly-ranked pages in the result usually contain many irrelevant or useless pages. The problem is that single-term queries do not contain sufficient information to specify exactly which web pages are needed by the user. The purpose of this paper is to describe the employment of association rules in data mining for developing networks and computing associative coefficient among the terms. And this paper shows how the dynamic query expansion and/or reduction can be performed in information retrieval.

  • PDF

Query Expansion by Concept-based Thesaurus using conceptual classification of Class (클래스의 개념적 분류를 이용한 개념기반 시소러스에 의한 질의 확장)

  • Kim, Gui-Jung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.352-356
    • /
    • 2004
  • Without detailed exact knowledge of a retrieval collection, most users find it difficult to formulate effective queries. A method to overcome this difficulty is to use query expansion that reformulates better query from initial query. In this paper we propose concept based query evaluation method using concept of class that retrieved from initial query.

  • PDF

Department of Computer Science, Chosun University

  • Young-cheon kim;Moon, You-Mi;Lee, Sung-joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.659-665
    • /
    • 2001
  • Relevance feedback is the most popular query reformulation strategy in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.

  • PDF

A Study on Improving the Effectiveness of Information Retrieval Through P-norm, RF, LCAF

  • Kim, Young-cheon;Lee, Sung-joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • Boolean retrieval is simple and elegant. However, since there is no provision for term weighting, no ranking of the answer set is generated. As a result, the size of the output might be too large or too small. Relevance feedback is the most popular query reformulation strategy. in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.

Design and Implementation of “Concept Wizard” Supporting Query Formulation with Concept Term Expansion (개념 검색어 확장을 통해 질의 형식화를 도와주는 “개념 마법사”의 설계 및 구현)

  • Kang, Hyun-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.437-444
    • /
    • 2002
  • There are some important that development of tools to retrieve information by simple operation in large of nave users in the world wide web. In general, query formulation method and operators are variety, not easy to formulate query in information retrieval system or web based retrieval engine. In this paper, we propose "Concept Wizard" to support query formulation with concept term expansion in natural language query information retrieval system. The Concept Wizard are interactively supporting query formulation using thesaurus and Providing plug-in on the web.

Web Information Retrieval based on Natural Language Query Analysis and Keyword Expansion (자연어 질의 분석과 검색어 확장에 기반한 웹 정보 검색)

  • 윤성희;장혜진
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.2
    • /
    • pp.235-248
    • /
    • 2004
  • For the users of information retrieval systems, natural language query is the more ideal interface, compared with keyword and boolean expressions. This paper proposes a retrieval technique with expanded keyword from syntactically-analyzed structures of natural language query as user input. Through the steps combining or splitting the compound nouns based on syntactic tree traversal of the query, and expanding the other-formed or shorten-formed into multiple keyword, it can enhance the precision and correctness of the retrieval system.