• Title/Summary/Keyword: quenching and Tempering

Search Result 107, Processing Time 0.03 seconds

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.

Effects of Austenitizing Temperature and Cooling Rate on Precipitation Behavior and Tensile Properties of Pressure Vessel Steels (압력용기용 강의 석출거동과 인장특성에 미치는 오스테나이트화 온도 및 냉각속도의 영향)

  • Shin, Jae Woong;Lee, Sang Min;Kim, Yong Jin;Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • The effects of austenitizing temperature and cooling rate on precipitation behavior and tensile properties were investigated in an Mn-Mo-Nb-V pressure vessel steel. During austenitizing, it was shown that the austenite coarsening was somewhat suppressed by undissolved NbC. After cooling from austenitizing, the microstructure of all the steels mainly consisted of upper bainite. However, the steel comprised a little lower bainite and martensite in the case of aqua oil quenching from $1000^{\circ}C$, which would be due to increased hardenability by partly dissolved Nb and comparatively large austenite grains. The average size of NbC in austenite at higher temperature was analyzed to be smaller than that at lower temperature because of the more dissolution. It was found that the NbC did not grow much during fast cooling from austenitizing. Meanwhile, the NbC grew much during slow cooling, probably due to wide temperature range of cooling and sufficiently long time for NbC to grow. It was conjectured the V precipitates newly formed and/or grew during cooling from austenitizing and during tempering. On the other hand, the formation of NbC was almost completed before tempering and little more precipitated during tempering. Among the tempered steels, the steel which was fast cooled from $1000^{\circ}C$ showed the highest tensile strength, which seemed to come from the microstructure of fine upper bainite and some low temperature phases as well as the comparatively fine NbC precipitates.

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel (STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동)

  • Kim, Mingu;Lee, Kwangmin
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment (다구찌 직교배열 실험을 이용한 무한궤도용 트랙 슈의 충격인성 향상 연구)

  • Kim, Young Suk;Chang, Keun Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1611-1619
    • /
    • 2015
  • This study examined the toughness improvement of a track shoe used as the undercarriage of excavator and bulldozer parts. The excavator is operated under poor conditions, such as the build-up field and quarry. Therefore, the track shoe requires high strength and impact toughness to endure immense shock while at work. The track shoe was made of heat treated boron steel. The sufficient possibility of hardenability with the theoretical Jominy curve for boron steel was confirmed while quenching. The Taguchi orthogonal array experiment method was used to optimize the process variables, such as area reduction ratio and heat treatment conditions (tempering temperature and holding time), to achieve toughness improvement. The toughness of the track shoe increased with increasing area reduction, and a tempering temperature of $210^{\circ}C$ and a tempering time of 80 min are beneficial for improving the toughness of the track shoe.

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam;Kim, Tae-Kyu;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.249-256
    • /
    • 2019
  • The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr) (마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

Effect of Carburizing Heat Treatment Process on Microstructure and Residual Stress Changes in AISI 9310 Steel. (AISI 9310강의 침탄열처리 경로가 조직 및 잔류응력 변화에 미치는 영향)

  • Youngchul Jeong;Joohyeon Bae;Jaeman Park;Seungjun OH;Janghyun Sung;Yongsig Rho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • In this study, the carburizing heat treatment process used in aircraft gear manufacturing was compared with the general carburizing heat treatment process using AISI 9310 steel. The process of carburizing followed by slow cooling, and then quenching after austenitizing(Process A) showed less compressive residual stress and less retained austenite in the surface layer compared to the process of quenching directly after carburizing(Process B). In prpcess B, there was a large amount of retained austenite when quenched immediately after carburization, and when treated with subzero, martensite rapidly increased and the compressive residual stress increased significantly, but at the same time, there is a risk of cracking due to severe expansion in volume. Therefore, in the case of aviation parts, it is believed that a step-by-step heat treatment cycle was adopted to ensure stability against heat treatment cracks. As a result of the final tempering after sub-zero treatment, the A process specimen showed a deeper effective case depth and HV700 depth and a higher hardness value above HV700 than the B process specimen.

A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis (유한요소해석을 통한 비조질강 성형 특성 분석)

  • Kwon, Yong-Nam;Kim, S.W.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

A Study on Mechanical Properties of Micro-Alloyed Steel According to Baking Temperature (베이킹 온도에 따른 비조질강 기계적 특성)

  • Lee, S.H.;Lee, K.T.;Kwon, Y.N.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.621-627
    • /
    • 2006
  • Recently, micro-alloyed steels which could eliminate heat treatments after forging has been developed. These non heat-treated micro-alloyed steels have several advantages over the conventional quenched and tempered steel for cold forging. First of all, long components can be fabricated with a better dimensional accuracy since bending of long forged part after quenching treatment could be avoided. And it is possible to eliminate two energy consuming heat treatment steps, which are a spherodizing before forging and quenching/tempering after forging. Therefore, more cost effective and environment friendly process could be designed. However, there is non-uniform distribution of strain occurred across the forged part, since these non heat-treated micro-alloyed steel use strain hardening mechanism. In the present study, it was investigated how to lessen non-uniformity and increase strength together for cold forging when a baking heat treatment is applied in micro-alloyed steels. For this purpose, micro-alloyed steels developed by Se-A Besteel recently was used for the experiment.

Effect of Welding Variables for EBW Process in AISI 4130 by Taguchi Method (다구찌 방법을 이용한 AISI 4130재료에서 EBW공정의 용접 변수 영향)

  • Kim, Won-Hoon
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.66-77
    • /
    • 1997
  • In the present work, Taguchi method for electron beam welding(EBW) process in AISI 4130 steel plate has been adopted for investigating the contribution of effect of welding variables. $A L_8(2^7)$ orthogonal array is adopted to obtain the effect of adjustment parameters. The adjustment parameters consist of accelerating voltage, beam current, travel speed and focus currrent. And the quality features selected for the EBW process are bead width of weldment, reinforcement, penetration depth, undercut and area of weld metal. Variance analysis is performed in order to check the effect of adjustment parameters on EBW. The mechanical properties of electron beam welded joints for each heat treatment conditions are investigated in comparison with those of base metal, especially from the view point of tensile and impact properties.

  • PDF