• Title/Summary/Keyword: quenching

Search Result 1,437, Processing Time 0.03 seconds

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit (복사 열손실에 의한 소염근처에서 셀모양 대향류 확산화염의 특성에 대한 수치해석)

  • Lee, Su Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damk$\ddot{o}$hler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damk$\ddot{o}$hler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.

Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media (온도센서용 실리카에 담지된 ZnSe 양자점 소재)

  • Lee, Ae Ri;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.362-365
    • /
    • 2015
  • Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot

  • Hwang, Cheong-Soo;Cho, Ill-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1776-1782
    • /
    • 2005
  • ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.

Effect of Nitrite and Nitrate as the Source of OH Radical in the O3/UV Process with or without Benzene

  • Son, Hyun-Seok;Ahammad, A.J. Saleh;Rahman, Md. Mahbubur;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3039-3044
    • /
    • 2011
  • This study suggests the prediction model for the concentration variation of $NO_2{^-}$ and $NO_3{^-}$ along with the rate constants of all reactions during ozonation under UV radiation ($O_3$/UV process). While $NO_2{^-}$ was completely converted into $NO_3{^-}$ during the $O_3$-only process, the production of $NO_2$ radical or $N_2O_4$ was expected in the $O_3$/UV process. In addition, the quenching of OH radicals, by $NO_2$ radical in the $O_3$/UV process, resulted in regeneration of $NO_2{^-}$. However, the regeneration of $NO_2{^-}$ was not observed in the $O_3$/UV process in the presence of $C_6H_6$ where the concentrations of $NO_2{^-}$ and $NO_3{^-}$ were significantly reduced compared to in the process without $C_6H_6$. The pseudo-first order rate constants of all species were calculated with and without the presence of $C_6H_6$ to predict the variation of concentrations of all species during the $O_3$/UV process. It was suggested that $NO_2{^-}$ and $NO_3{^-}$ in the $O_3$/UV process can be more effectively removed from an aqueous system with an OH radical scavenger such as $C_6H_6$.

Europium-Enoxacin Complex as Fluorescence Probe for the Determination of Folic Acid in Pharmaceutical and Biological Samples

  • Alam, Al-Mahmnur;Kamruzzaman, Mohammad;Lee, Sang-Hak;Kim, Young-Ho;Min, Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3055-3060
    • /
    • 2012
  • A simple, rapid and sensitive spectrofluorometric method was developed for the determination of folic acid (FA), based on its quenching effect on the fluorescence intensity of enoxacin (ENX)-europium ($Eu^{3+}$) complex as a fluorescent probe. Fluorometric interaction between ENX-$Eu^{3+}$ complex and FA was studied using UV-visible and fluorescence spectroscopy. The quenched fluorescence intensity at an emission wavelength of 614 nm was proportional to the concentration of FA. Optimum conditions for the determination of FA were investigated. Under optimal conditions, the reduced fluorescence intensity at 614 nm was responded linearly with the concentration of FA. The linearity was maintained in the range of $1.25{\times}10^{-9}$ to $1.50{\times}10^{-7}$ M (R = 0.9986) with the limit of detection ($3S_b/m$) (where $S_b$ is the standard deviation of blank and m is the slop of linear calibration curve) of $6.94{\times}10^{-10}$ M. The relative standard deviation (RSD) for 9 repeated measurements of $1.0{\times}10^{-9}$ M FA was 1.42%. This method was simple, cost effective, and relatively free of interference from coexisting substances. Successful determinations of FA in pharmaceutical formulation and biological samples with the developed method were demonstrated.

The Fluorescence Study on the Inducing Orientation of 4-Biphenyl Acetonitrile Adsorbed on Metal Colloids (금속콜로이드 표면에 흡착된 4-Biphenyl Acetonitrile의 흡착배향 유도에 관한 형광 연구)

  • Song, Won-Sik;Lee, Jun-Kyeng;Yu, Soo-Chang
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.399-406
    • /
    • 2009
  • The fluorescence study was performed to see whether the adsorption orientation of 4-biphenyl acetonitrile(BPAN) on metal colloids can be changed by forming an inclusion complex with $\alpha$-cyclodextrin($\alpha$-CD). The fluorescence quenching was observed with increasing temperature to confirm the direct adsorption of BPAN to the Au and Ag colloidal surfaces. BPAN adsorbed on the metal colloids formed inclusion complex with $\alpha$-CD regardless of the kinds of metal colloids. The formation constants, 32 $M^{-1}$ and 13 $M^{-1}$ for Au and Ag colloids respectively, were obtained with Benesi-Hildebrand plot. The molecules adsorbed on both the Au and Ag colloidal surfaces behaved similarly to each other, leading to the conclusion that the orientation of BPAN adsorbed on the metal colloids can be modified with $\alpha$-CD.

Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance

  • Kim, Jun-Il;Park, Sun-Min;Roh, Kwang Chul;Lee, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2573-2576
    • /
    • 2013
  • Rate capability and cyclability of $LiMn_2O_4$ should be improved in order to use it as a cathode material of lithium-ion batteries for hybrid-electric-vehicles (HEV). To enhance the rate capability and cyclability of $LiMn_2O_4$, it was coated with $MnV_2O_6$ by a sol-gel method. A $V_2O_5$ sol was prepared by a melt-quenching method and the $LiMn_2O_4$ coated with the sol was heat-treated to obtain the $MnV_2O_6$ coating layer. Crystal structure and morphology of the samples were examined by X-ray diffraction, SEM and TEM. The electrochemical performances, including cyclability at $60^{\circ}C$, and rate capability of the bare and the coated $LiMn_2O_4$ were measured and compared. Overall, $MnV_2O_6$ coating on $LiMn_2O_4$ improves the cyclability at high temperature and rate capability at room temperature at the cost of discharge capacity. The improvement in cyclability at high temperature and the enhanced rate capability is believed to come from the reduced contact between the electrode, and electrolyte and higher electric conductivity of the coating layer. However, a dramatic decrease in discharge capacity would make it impractical to increase the coating amount above 3 wt %.

The $PbWO_{4}:Nb$ single crystal growth and its optical properties ($PbWO_{4}:Nb$ 단결정의 성장과 그 광학적 특성)

  • 장경동;김도형;양희선;이상걸;박효열;이진호;이동욱;이상윤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • High quality pure and Nb-doped $PbWO_{4}$ Single Crystal were grown from a 50 %~50 % mixture of Lead oxide (PbO) and Tungsten oxide $(WO_{3})$ by Czochralski method in Iridium crucible. The stoichiometric deviation correspond to the selective loss of the crystal constituents is found to be responsible for the yellowish coloration of $PbWO_{4}$. Through the X-ray powder diffraction experiment, we have investigated the lattice constant variations of each $PbWO_{4}$ crystals. We also present information on their photoluminescence (PL), optical absoption properties and Raman spectra. The temperature dependence of PL intensity and FWHM (Full Width Half Maximum) were measured in the temperature range 10 K~300 K. One observes a slight temperature dependence in the low temperature region and PL intensity decreases over 200 K by thermal quenching. The activation energy, Huang-Rhys coupling constant and inhomogenious brodenning acquired from their temperature dependence.

  • PDF

Effects of Austenitizing Temperature and Cooling Rate on Precipitation Behavior and Tensile Properties of Pressure Vessel Steels (압력용기용 강의 석출거동과 인장특성에 미치는 오스테나이트화 온도 및 냉각속도의 영향)

  • Shin, Jae Woong;Lee, Sang Min;Kim, Yong Jin;Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • The effects of austenitizing temperature and cooling rate on precipitation behavior and tensile properties were investigated in an Mn-Mo-Nb-V pressure vessel steel. During austenitizing, it was shown that the austenite coarsening was somewhat suppressed by undissolved NbC. After cooling from austenitizing, the microstructure of all the steels mainly consisted of upper bainite. However, the steel comprised a little lower bainite and martensite in the case of aqua oil quenching from $1000^{\circ}C$, which would be due to increased hardenability by partly dissolved Nb and comparatively large austenite grains. The average size of NbC in austenite at higher temperature was analyzed to be smaller than that at lower temperature because of the more dissolution. It was found that the NbC did not grow much during fast cooling from austenitizing. Meanwhile, the NbC grew much during slow cooling, probably due to wide temperature range of cooling and sufficiently long time for NbC to grow. It was conjectured the V precipitates newly formed and/or grew during cooling from austenitizing and during tempering. On the other hand, the formation of NbC was almost completed before tempering and little more precipitated during tempering. Among the tempered steels, the steel which was fast cooled from $1000^{\circ}C$ showed the highest tensile strength, which seemed to come from the microstructure of fine upper bainite and some low temperature phases as well as the comparatively fine NbC precipitates.