• 제목/요약/키워드: quench analysis

검색결과 127건 처리시간 0.022초

Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

  • Jin, Hongwoo;Lee, Jiho;Lee, Woo Seung;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.41-44
    • /
    • 2015
  • Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous $I_c$ distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous $I_c$ distribution along the length. If the $I_c$ distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, $I_c$ distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, $I_c$ distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

Assessment of the severe accident code MIDAC based on FROMA, QUENCH-06&16 experiments

  • Wu, Shihao;Zhang, Yapei;Wang, Dong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.579-588
    • /
    • 2022
  • In order to meet the needs of domestic reactor severe accident analysis program, a MIDAC (Module Invessel Degraded severe accident Analysis Code) is developed and maintained by Xi'an Jiaotong University. As the accuracy of the calculation results of the analysis program is of great significance for the formulation of severe accident mitigation measures, the article select three experiments to evaluate the updated severe accident models of MIDAC. Among them, QUENCH-06 is the international standard No.45, QUENCH-16 is a test for the analysis of air oxidation, and FROMA is an out-of-pile fuel rod melting experiment recently carried out by Xi'an Jiaotong University. The heating and melting model with lumped parameter method and the steam oxidation model with Cathcart-Pawel and Volchek-Zvonarev correlations combination in MIDAC could better meet the needs of severe accident analysis. Although the influence of nitrogen still need to be further improved, the air oxidation model with NUREG still has the ability to provide guiding significance for engineering practice.

Increased impedance by quench at a shield layer of HTS power cable for fault current limiting function

  • Choi, Youngjun;Kim, Dongmin;Cho, Jeonwook;Sim, Kideok;Kim, Sungkyu;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.59-63
    • /
    • 2019
  • To reduce the fault current below the current capacity of a circuit breaker, researches on HTS (High Temperature Superconductor) power cables with fault current limiting (FCL) function are increasing. An FCL HTS power cable transports current with low a impedance during normal operation. Yet, it limits the fault current by an increased inductive or resistive impedance of conducting layer when quench occurs at the FCL HTS power cable by the large fault current. An inductive type FCL HTS power cable uses increased inductive impendence caused by leakage magnetic flux outside the cable core when the quench occurs at a shield layer losing the magnetic shielding effect. Therefore, it has an advantage of less resistive heating than resistive type FCL HTS power cable and temperature increase is suppressed. This paper describes an ideal circuit model for the FCL HTS power cable to investigate the effectiveness of increased inductive impedance when quench occurs at the shield layer. Then, FEM analysis is presented with a simplified model cable composed of various iron yokes to investigate the effect of the shape of yoke on the generation of the inductive impedance.

Computation of the Current Limiting Behavior of BSCCO-2212 High-Temperature Superconducting Tube with Shunt Coils

  • Kim, H.M.;Park, K.B.;Lee, B.W.;Oh, I.;Sim, J.;Hyun, O.B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.22-25
    • /
    • 2006
  • This paper deals with the computation of the current limiting behavior of high-temperature superconducting (HTS) modules for the superconducting fault current limiter (SFCL). The SFCL module consists of a monofilar type BSCCO-2212 tube and a shunt coil made of copper or brass. The shunt coil is connected to the monofilar superconducting tube in parallel. Through analysis of the quench behavior of the monofilar component with shunt coils, it is achieved to drive an equivalent circuit equation from the experimental circuit structure. In order to analyze the quench behavior of the SFCL module, we derived a partial differential equation technique. Inductance of the monofilar component and the impedance of the shunt coil are calculated by Bio-Savart and Ohm's formula, respectively. We computed the quench behavior using the calculated values, and compared the results with experimental results for the quench characteristics of a component. The results of computation and test agreed well each other, and it was concluded that the analytic result could be applied effectively to design of the distribution-level SFCL system.

Study on the effect of flow blockage due to rod deformation in QUENCH experiment

  • Gao, Pengcheng;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3154-3165
    • /
    • 2022
  • During a loss-of-coolant accident (LOCA) in the pressurized water reactor (PWR), there is a possibility that high temperature and internal pressure of the fuel rods lead to ballooning of the cladding, which causes a partial blockage of flow area in a subchannel. Such flow blockage would influence the core coolant flow, thus affecting the core heat transfer during a reflooding phase and subsequent severe accident. However, most of the system analysis codes simulate the accident process based on the assumed channel blockage ratio, resulting in the fact that the simulation results are not consistent with the actual situation. This paper integrates the developed core Fuel Rod Thermal-Mechanical Behavior analysis (FRTMB) module into the self-developed severe accident analysis code ISAA. At the same time, the existing flow blockage model is improved to make it possible to simulate the change of flow distribution due to fuel rod deformation. Finally, the ISAA-FRTMB is used to simulate the QUENCH-LOCA-0 experiment to verify the correctness and effectiveness of the improved flow blockage model, and then the effect of clad ballooning on core heat transfer and subsequent parts of core degradation is analyzed.

고온 초전도 테이프 선재의 퀀치 전파 특성 해석 (Analysis on Quench Propagation Characteristics of HTS Tape)

  • 이지광;김지훈;류경우;차귀수;한송엽
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권1호
    • /
    • pp.35-35
    • /
    • 2000
  • The main issues for the power application of High Tc superconducting tape are lower AC loss and higher stability conditions. HTS tape has large stability margin by high heat capacity of superconductor itself and high temperature margin. But, it can be damaged by continuous heat generation at quench point, because normal zone propagation velocity by generating heat is very low. Here, we analyze the quench propagation characteristics using finite element method for BSCCO-2223 HTS tape.

KSTAR 초전도 자석의 운전 안정성에 대한 연구 (Study of Energy Margin and Operating Current Margin of KSTAR Cable-In-Conduit Conductor)

  • 이현정;오영국;김웅채;박수환;김형찬;김기만
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.193-201
    • /
    • 2007
  • Since the margins for the minimum quench energy and for the operating current in the superconducting magnet determine the operating regime of the magnet, a thermal stability analysis for the KSTAR superconducting magnet system is performed using 1-D Gandalf code. The result shows that the minimum quench energy is about 500 mJ/cc and the operating current margin is about 70 %. These values are larger than those of the KSTAR design criteria and the KSTAR superconducting magnet system can be operated stably under various experimental environments.

  • PDF

두 번의 피크전류제한 기능을 갖는 변압기형 초전도한류기의 과도전류제한 동작 특성 연구 (Study on Transient Current Limiting Operational Characteristics of Transformer Type SFCL with Two Peak Current Limiting Function)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.499-504
    • /
    • 2016
  • In this paper, we analyzed the operational characteristics of the fault current limiting according to the amplitude of the fault current for the transformer type superconducting fault current limiter (SFCL). If the fault current happens, the superconducting element connected to the secondary coil is occurred quench and the fault current is limited. When the larger fault current occurs, the superconducting element connected to the third coil is occurred additional quench and the peak fault current is limited. We found that the fault current can be more effectively controlled through the analysis of the fault current limiting and the short-circuit tests.

초전도 배전 케이블 계통에서의 과도상태 해석 (Analysis of Transient State in the Superconducting distribution Cable Systems)

  • 김남열;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

초전도 병렬 무유도권선의 온도 해석 (The Analysis of Temperature on Superconducting Parallel Bifilar Winding)

  • 오윤상;이상진;배준한;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.134-136
    • /
    • 1995
  • A superconducting parallel bifilar winding shows the phenomenon which is known as 'fast quench'. We analyzed the temperature characteristics on the winding by computer simulation, and confirmed theses by experiment. The temperature of the quenched point rose gradually as the source voltage was increased. The temperature changed radically as first, but had a gentle slope after a few milliseconds. As the source voltage was large, the initial quenched length also increased. The points in this quenched length showed almost the same temperature. but the points where initial quench had not occurred showed radical temperature gradient. We could observe that the temperature of the whole wire increased simultaneously as the fast quench occurred on the superconducting parallel bifilar winding, because a number of quenched points in that wire appeared at the same time.

  • PDF