Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.8.499

Study on Transient Current Limiting Operational Characteristics of Transformer Type SFCL with Two Peak Current Limiting Function  

Han, Tae-Hee (Department of Aero Materials Engineering, Jungwon University)
Lim, Sung-Hun (School of Electrical Engineering, Soongsil University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.8, 2016 , pp. 499-504 More about this Journal
Abstract
In this paper, we analyzed the operational characteristics of the fault current limiting according to the amplitude of the fault current for the transformer type superconducting fault current limiter (SFCL). If the fault current happens, the superconducting element connected to the secondary coil is occurred quench and the fault current is limited. When the larger fault current occurs, the superconducting element connected to the third coil is occurred additional quench and the peak fault current is limited. We found that the fault current can be more effectively controlled through the analysis of the fault current limiting and the short-circuit tests.
Keywords
SFCL (transformer type superconducting fault current limiter); Fault current; Quench; Superconducting element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Thuries, V. D. Pham, Y. Laumond, U. Verhaege, A, Fevrier, M. Collet, and M. Bekhaled, IEEE Trans. On Power Del., 6, 2 (1991). [DOI: http://dx.doirg/10.1109/61.131138]   DOI
2 B. Gromoll, G. Ries, W. Schmidt, H. P. Kramer, and H. W. Neumuller, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doirg/10.1109/77.614631]
3 M. Noe and B. R. Oswald, IEEE Trans. on Appl. Supercond., 9, 2 (1999). [DOI: http://dx.doirg/10.1109/77.783552]   DOI
4 H. Kado and M. Ichikawa, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doirg/10.1109/77.614672]
5 G. Didier, J. Leveque, and A. Rezzoug, IEEE Trans. on Power Systems, 28, 2 (2013). [DOI: http://dx.doirg/10.1109/TPWRS.2012.2224386]   DOI
6 J. H. Lee and S. K. Joo, IEEE Trans. on Appl. Supercond., 23, 3 (2013). [DOI: http://dx.doirg/10.1109/TASC.2013.2266401]   DOI
7 S. C. Ko, S. H. Lim, and T. H. Han, Physica C, 484, 263 (2013). [DOI: http://dx.doi.org/10.1016/j.physc.2012.03.041]   DOI
8 S. H. Lim, Physica C, 470, 1631 (2010). [DOI: http://dx.doi.org/10.1016/j.physc.2010.05.177]   DOI
9 S. H. Lim, H. S. Choi, D. C. Chung, S. C. Ko, and B. S. Han, IEEE Trans. on Appl. Supercond., 15, 2 (2005). [DOI: http://dx.doirg/10.1109/TASC.2005.851659]   DOI
10 S. H. Lim, H. S. Choi, and B. S. Han, Physica C, 416, 34 (2004).   DOI
11 H. S. Choi, O. B. Hyun, H. R. Kim, and K. B. Park, IEEE Trans. on Appl. Supercond., 14, 3 (2002).
12 H. S. Choi, Y. S. Cho, and S. H. Lim, IEEE Trans. on Appl. Supercond., 16, 2 (2006). [DOI: http://dx.doirg/10.1109/TASC.2006.869914]   DOI
13 Y. S. Cho, N. Y. Lee, H. S. Choi, D. C. Chung, and S. H. Lim, Physica C, 463, 1204 (2007). [DOI: http://dx.doirg/10.1016/j.physc.2007.03.459]