• 제목/요약/키워드: quaternary period

Search Result 140, Processing Time 0.021 seconds

A New Construction Method of Quaternary LCZ Sequence Set (4진 낮은 상관 구역 수열군의 새로운 생성법)

  • Jang, Ji-Woong;Kim, Young-Sik;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.153-157
    • /
    • 2009
  • In this paper, for even integer N, we propose a new construction method of quaternary low correlation zone(LCZ) sequence set from a binary LCZ sequence set with parameters (N,M,L,$\varepsilon$). Proposed method applies the inverse gray mapping from Krone and Sarwate to binary LCZ sequences and their phase shifts. The only needed condition of binary LCZ sequence set used in this construction is even period.

What means Changma in KOREA? (우리나라 장마에 대한 소고)

  • Ryoo, Sang-Boom;Oh, Jai-Ho;Lee, Jin-Suk;Lee, Kyoung-Min
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.18-26
    • /
    • 2005
  • The East Asian summermonsoon is generally accompanied with the quasi-stationary front along the northern and northwestern periphery of the subtropical Northwest Pacific high. The rainy season in Korea has been called as Changma since the middle of 1500s. Understanding of Changma and heavy rainfall advancing along the Changma front is one of main interesting of Korean meteorologists. This study briefly summarized the descriptive characteristics of Changma and its relatedmechanism, definitions on the Changma period, and etymology of Changma through reviewing the previous studies on Changma.

  • PDF

Spore-Pollen Specters of Deed Turnn Lake Terrace, Darkhad Depression, Mongolia

  • Punsalpaamuu, G.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.39-41
    • /
    • 2003
  • Pollen and spores as well as their morphological characteristics are biological stability materials in which contains historical information about vegetation and climate changes. As noted researcher Neishtadt in 1971, the lake and swamp deposits were developed only in Holocene period. The geological history of Darkhad depression which is situated in the Northern end of Mongolia from ancient time become under scientific interest of many researchers. Our investigation was focused on pollen analysis of lake sediment of Darkhad depression which caused bottom of paleolake. In Mongolia the palynology science is beginning to develop since 1990 and in 2000 the laboratory of palynology was established at the department of Biology, State Pedagogical University of Mongolia. Researchers from this laboratory working on pollen morphology of present flora in order to classify plants taxonomy. Another part of our investigation is mellitopalynology, which is studying of pollen grains in a honey. Although, this research has been extending by pollen analysis of sediment and lake deposits in past few years on the basis of high sensitive microscope and modem technology.

  • PDF

Climatic Changes During the Past 400,000 Years

  • Yi, HI-Il;Shin, Im-Chul
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.23-31
    • /
    • 2004
  • Temperature variations, and carbon dioxide and methane concentrations are summarized during the past 400,000 years. Atmospheric temperature varied approximately within $10^{\circ}C$ during the past 400,000 years. Most of the time during the past 400,000 years, temperature was lower than today except 410000, 320000, 250000, and 125000 years ago. Temperature was slightly higher or at least similar to today during the time period of 410000. 320000, 250000, and 125000 years ago. The carbon dioxide concentration varied between 180 and 300 ppm, and the methane concentration varied between 40 and 700ppb. The present atmospheric concentration of carbon dioxide is 375 ppm and methane is 1750 ppb. Temperature was 5-$7^{\circ}C$ lower than today during the Last Glacial Maximum(18,000 years ago) and the Younger Dryas(10,000 years ago). Temprature was varied within $1^{\circ}C$ during the past 10,000 years. Especially Middle Holocene Climatic Optimum(6,000 years ago), Medieval Warm Period (500-1,000 years ago), and Little Ice Age(100-500 year ago) were global climatic events. In general, mechanism for the Middle Holocene Climatic Optimum, Medical Warm Period, and Little Ice Age can be explained by the solar insulation, however their exact mechnism is not well known. Carbon dioxide concentration during the past 400,000 years never reached the current value of 375 ppm. Furthermore, the current methane concentration never reached during the past 20Ma. However, current temperature value has happened several times during the past 400,000 years. The implication of this is unsolved question so far. This should be challenged in the near future.

  • PDF

The Environmental Change at Kimpo Alluvial Plain during the Upper Holocene (김포충적평야의 홀로세 후기 환경변화)

  • 윤순옥;김혜령
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.83-91
    • /
    • 2001
  • The environmental change during the upper Holocene was restored at Kimpo alluvial plain on the left bank of Han-river near the Yellow Sea according to the results of pollen analysis and carbon dating, based on the sea-level change from Ilsan area. Pollenzone I (5.8~7.0 m.a.s.l.) was the period of AP-dominance, including mostly Alnus. Study area was under the lagoon or swamp environment influenced by Flandrian transgression during 5,000~3,200 BP. Pollenzone II (7.0~7.4 m.a.s.l.) was the period of Spore & NAP-dominance. It represents that the vegetational environment was changed to drier condition by falling underwater surface caused by sea-level regression, and influenced by human activity during 3,200~2,300 BP. Subzone I a represented the characteristics of the climax of transgression. During subzone I b, herbs with the dominant Alnus were increased gradually, and it was correlated to the stagnation of high sea-level. Subzone II a was the dominant period of Spore by the gradual falling of sea-level. After that, the study area in swamp was emerged to the lowland by the fallen sea-level and herbs, especially Gramineae increased suddenly during Subzone II b. The sudden increase of NAP such as Artemisia, Chenopodiaceae and Umbelliferae with Gramineae during this period indicates the beginning of agriculture at this study area.

  • PDF

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Magnetic Parameters as Indicators of Late-Quaternary Environments on Fort Riley Kansas (암석 자기 변수들을 이용한 제4기 고환경 복원-Fort Riley 캔사스)

  • Park, kyeong
    • The Korean Journal of Quaternary Research
    • /
    • v.11 no.1
    • /
    • pp.57-68
    • /
    • 1997
  • Climatic change of the late-Quaternary period has been record-ed in the loess deposits of the central Great plains and the record of such change is extractable using a number of approaches and parameters. The stratigraphy of loess deposits which have been investigated on Fort Riley exhibits the same sequence of loess units and intercalated buried soils as is found elsewhere in the re-gion but adds detail unique to the reservation Upland late-Qua-ternary composite stratigraphy preserved on the reservation con-sists of the basal Sangamon soil of the Last interglacial(c. 120-110ka), Gilman Canyon Formation(c. >40 -20ka), Peoria loess(c. 20 -10ka) Brady soil(c. 11 -10ka) Bignell loess(c. 9-\ulcornerka). and mod-ern surface soil. Application of magnetic analyses has provided proxy data sets that represent a time series of climatically regulated pedogenesis/weathering and botanical composition. magetic data have yielded an impression of the variation in climate from Sangamon time to the late Holocene through a reconstruction of the history of pedogenesis/weathering. Sangamon soil formation dominated the reservation durin the Last interglacial as indicated by magnetic parameters. During Gil-man Canyon time loess influx was usually sufficiently slow as to permit pedogenesis which appears to have been at a maximum twice during that time. Warm season grasses were important dur-ing soil formation but diminished in importance during the peri-ods of more rapid loess fall which were cooler and perhaps wet-ter. Peoria loess fall a function of the deterioration of climate during the last Glacial Maximum thinly blanketed the reservation with thickest accumulations occurring to the north-west(Bala Cemetery site)proximal to the source region. Long-term surface stability did not apparently occur within Peoria time but short-term stability may be indicaed by the presence of thin weathering zones(incipient soils) in the Peoria loess. Re-gional landscape stability prevailed during the environmental shift at the Pleistocene/Holocene transition resulting in forma-tion of the well expressed Brady soil. One or more weak soils developed in the Bignell loess as it ac-cumulated. A notable feature of the Bignell loess is the appear-ance of the Altithermal dry period: the loess experienced little weathering and was dominated by warm season grasses until the latter of the Holocene.

  • PDF

The Distribution and Geomorphic Development of Alluvial Fans along the Bulguksa Fault System in Gyeongju and Ulsan City, Southeastern Korea (한국 남동부 경주 및 울산시 불국사단층선 지역의 선상지 분포와 지형발달)

  • 황상일;윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.217-232
    • /
    • 2001
  • One of the molt debatable Issues on geomorphological study in Korea should be the discussion over the formation process of gent1e slope surfaces on the piedmont area. In this study, the characteristics of spatial distribution and the formation process of geomorphic surfaces were investigated by classifying the alluvial fans as three geomorphic surfaces alluvial the Bulguksa fault-line The fan surfaces, distributed along the west slue of Bulguksa Mts, consists the confluent alluvial fans continuously along the N-S direction The surfaces of Sincheon-Hyomun district juxtaposed to the Ulsan Bay must be infulenced by sea-level chance during the Quaternary Taken together, these observation suggests that the major four factors contributed to the fan formation 1) rather longer freeze-and-thaw cycle during the Glacial period. 2) the steep mountain slope along the west side of Bulguksa Mts.. which had been resulted from the horizont stress of EAst Sea 3)the tectolinear fault system developed by structural movement along the Bulguksa Fault-line valley. and 4) the erosion-labile characteristics of bedrock In this urea which is consisted of the Bulguksa granite and the sedimentary rock formed in Cretaceous period.

  • PDF

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF