• Title/Summary/Keyword: quasimodular form

Search Result 1, Processing Time 0.014 seconds

EVALUATION OF THE CONVOLUTION SUMS Σak+bl+cm=n σ(k)σ(l)σ(m), Σal+bm=n lσ(l)σ(m) AND Σal+bm=n σ3(l)σ(m) FOR DIVISORS a, b, c OF 10

  • PARK, YOON KYUNG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.813-830
    • /
    • 2022
  • The generating functions of the divisor function σs(n) = Σ0<d|n ds are quasimodular forms. In this paper, we find the basis of the space of quasimodular forms of weight 6 on Γ0(10) consisting of Eisenstein series and η-quotients. Then we evaluate the convolution sum Σak+bl+cm=n σ(k)σ(l)σ(m) with lcm(a, b, c) = 10 and Σal+bm=n lσ(l)σ(m) and Σal+bm=n σ3(l)σ(m) with lcm(a, b) = 10.