• Title/Summary/Keyword: quasiconvex

Search Result 7, Processing Time 0.024 seconds

RELATIONS BETWEEN CERTAIN DOMAINS IN THE COMPLEX PLANE AND POLYNOMIAL APPROXIMATION IN THE DOMAINS

  • Kim, Kiwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.687-704
    • /
    • 2002
  • We show that the class of inner chordarc domains is properly contained in the class of exterior quasiconvex domains. We also show that the class of exterior quasiconvex domains is properly contained in the class of John disks. We give the conditions which make the converses of the above results be true. Next , we show that an exterior quasiconvex domain satisfies certain growth conditions for the exterior Riemann mapping. From the results we show that the domain satisfies the Bernstein inequality and the integrated version of it. Finally, we assume that f is a function which is continuous in the closure of a domain D and analytic in D. We show connections between the smoothness of f and the rate at which it can be approximated by polynomials on an exterior quasiconvex domain and a $Lip_\alpha$-extension domain.

SECOND ORDER DUALITY IN VECTOR OPTIMIZATION OVER CONES

  • Suneja, S.K.;Sharma, Sunila;Vani, Vani
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.251-261
    • /
    • 2008
  • In this paper second order cone convex, second order cone pseudoconvex, second order strongly cone pseudoconvex and second order cone quasiconvex functions are introduced and their interrelations are discussed. Further a MondWeir Type second order dual is associated with the Vector Minimization Problem and the weak and strong duality theorems are established under these new generalized convexity assumptions.

  • PDF

A STRONG SOLUTION FOR THE WEAK TYPE II GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS

  • Kim, Won-Kyu;Kum, Sang-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.599-610
    • /
    • 2006
  • The aim of this paper is to give an existence theorem for a strong solution of generalized vector quasi-equilibrium problems of the weak type II due to Hou et al. using the equilibrium existence theorem for 1-person game, and as an application, we shall give a generalized quasivariational inequality.

Applications of Convolution Operators to some Classes of Close-to-convex Functions

  • Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 1988
  • Let C[C, D] and $S^{*}[C,\;D]$ denote the classes of functions g, g(0)=1-g'(0)0=0, analytic in the unit disc E such that $\frac{(zg{\prime}(z)){\prime}}{g{\prime}(z)}$ and $\frac{zg{\prime}(z)}{g(z)}$ are subordinate to $\frac{1+Cz}{1+Dz{\prime}}$ $z{\in}E$, respectively. In this paper, the classes K[A,B;C,D] and $C^{*}[A,B;C,D]$, $-1{\leq}B<A{\leq}1$; $-1{\leq}D<C{\leq}1$, are defined. The functions in these classes are close-to-convex. Using the properties of convolution operators, we deal with some problems for our classes.

  • PDF

SOME GEOMERTIC SOLVABILITY THEOREMS IN TOPOLOGICAL VECTOR SPACES

  • Ben-El-Mechaiekh, H.;Isac, G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.273-285
    • /
    • 1997
  • The aim of this paper is to present theorems on the exitence of zeros for mappings defined on convex subsets of topological vector spaces with values in a vector space. In addition to natural assumptions of continuity, convexity, and compactness, the mappings are subject to some geometric conditions. In the first theorem, the mapping satisfies a "Darboux-type" property expressed in terms of an auxiliary numerical function. Typically, this functions is, in this case, related to an order structure on the target space. We derive an existence theorem for "obtuse" quasiconvex mappings with values in an ordered vector space. In the second theorem, we prove the existence of a "common zero" for an arbitrary (not necessarily countable) family of mappings satisfying a general "inwardness" condition againg expressed in terms of numerical functions (these numerical functions could be duality pairings (more generally, bilinear forms)). Our inwardness condition encompasses classical inwardness conditions of Leray-Schauder, Altman, or Bergman-Halpern types.

  • PDF